Читаем УРОЖАИ И ПОСЕВЫ полностью

Конечно, пока ни за что ручаться нельзя: может статься, где-нибудь в закоулках памяти меня подстерегает загадка, до сих пор упорно ускользавшая от моего взгляда. Но верно и то, что чувство освобождения никогда еще меня не обманывало. То надежное, прочное знание, которое оно всегда приносило с собой, было и в самом деле освобождением. Оно не улетучивалось со временем, но приживалось, становилось как бы частью меня самого. Я мог бы, если бы захотел, забыть об этом знании, зарыть его в памяти, когда угодно и под любым предлогом. Но оно есть, и уничтожить его не в моей власти: этого не может никто. Спелый плод уже не станет зеленым, и времени вспять не повернешь.

Заново убедиться в том, что ты не лучше других, всегда большое облегчение. Само собою, я и это повторял себе тысячу раз, но повторять - совсем не то, что видеть. Ребенок в своей невинности видит, как дышит - но взрослому для этого нужно потрудиться, сбросить с плеч привычные заблуждения. Я решился на это, и вот нашел наконец, открыл очевидное; труд завершен. Я увидел, что я не «лучше» своих коллег и прежних учеников, и напрасно у меня на днях при одной мысли об их поступках «перехватывало дыхание»! Нет слов, насколько легче мне теперь дышится. Воображать, будто ты лучше других, иногда, пожалуй, приятно, но всегда утомительно. Сколько сил уходит на то, чтобы без конца подтверждать обман, следить, чтобы ветер не разметал воздушные замки! Этого обычно не замечаешь, а все же удерживать повязку на глазах и зажимать уши, когда вокруг бушует гроза и сама очевидность грохочет: «Все это ложь, фальшивка - да взгляни же, глупец!» - требует подчас неимоверных усилий. И тут я действительно сберегаю силы: ведь я мог бы еще не год и не два бродить по кругу, зажимая уши и зажмуривая глаза (надо же было так мучиться!), не умея смириться с тем, что вещи, так бестолково разложенные мною по полкам, то и дело валятся вниз.

Хватит уже кружиться на карусели! Тот, кто видит заколдованный круг, уже вырвался из него. Конечно, если хочешь платить, можешь вертеться хоть до бесконечности: это твое право, даже твой долг. Да что там, есть о чем толковать, мне любой скажет: долг это или право -

каждый понимает по-своему. Но я так устал от всех этих прав, которые еще и обязанности, от обязанностей, которые в то же время права; с тех пор как я перестал ставить себя выше других, мне они попросту ни к чему. В конце концов, для того, кто лучше других, естественно получать за это скромное вознаграждение (вот оно, «право»): ведь он «платит», он исполняет свой долг, к вящей славе математики и вообще человеческого разума - и это хорошо, это справедливо; честь, разум, математика, лучше не скажешь, браво!., бис!.. Все это прекрасно, согласен, но и утомительно; от этого, представьте, костенеет шея. Я уже отмучился, с меня довольно: уступаю место другим.

Возвращаясь к моим ученикам - они и должны были превзойти своего учителя. Я возмущался, так что же: значит, впустую тратить силы мне было не жаль. С этого дня - довольно.

Какой груз с плеч!

42. Пожалуй, я даже уверен в том, что без пыли в темных углах не обошлось: что-то я, наверное, все-таки упустил, где-то не прошелся метлой. Не беда, если так: будет время, доберусь и до этих неясных мест - да они, верно, и сами дадут о себе знать. Но «размышления о прошлом математика» как таковые подходят к концу: генеральная уборка, без сомнения, завершена.

Сейчас, лишний раз убедившись в том, что я не лучше других, хорошо бы не запутаться в бесконечной цепочке: не счесть себя лучше себя самого. Не вообразить, что теперь, когда я добровольно сошел с карусели, и прочая, и прочая, я стал лучше, чем был пятнадцать лет, или дней, тому назад. Чему-то я научился за прошедшие пятнадцать лет, это верно; за последние пятнадцать дней тоже - и даже вчера я уже успел кое-что о себе узнать. Это значит, что у меня прибавилось зрелости, что я изменился. Но спелый плод не «лучше» зеленого. Времена года не бывают лучше или хуже. Зрелый плод одному покажется слаще, другому - горше зеленого; о вкусах не спорят. Сам я год от года чувствую себя все лучше и лучше - надо думать, происходящие со мной перемены мне «по вкусу»; зато мои друзья и близкие от них не в восторге. Всякий раз, когда я снова берусь за математику, на меня со всех сторон сыплются поздравления типа: «Подумать только, а он еще занимался чем-то другим! Наконец-то он взялся за ум - давно бы так!» Какой-то тревогой, неустроенностью всегда веет от перемен…

Я учусь, набираюсь зрелости, я меняюсь - да так, что подчас

Самодовольство и обновление

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика