Читаем УРОЖАИ И ПОСЕВЫ полностью

интереснее) сделать все по-своему, описать вещи в том порядке, в каком они попадались мне на пути. Это я и делал - «на бегу», не сбавляя шага, ведь моя цель была далеко впереди. И, разумеется, я достаточно разбирался в ситуации, чтобы знать наверное: того, что ждет меня в конце пути, еще нет ни в статьях, ни в книгах.

Это лишний раз наводит на мысль о том, что математика, даже если годами заниматься ею в одиночестве, - труд не личный, не индивидуальный, в отличие, скажем, от медитации. По крайней мере, для меня это так. Когда «неизвестное» в математике влечет меня за собой, оно должно быть неизвестно всем, а не мне одному. Если что-то написано в книге, оно уже известно, даже если я о нем никогда не слыхал. У меня никогда не возникало желания прочесть ту или иную книжку или статью: наоборот, я, если только мог, всегда старался этого избежать. В печатном тексте не кроется тайны; его содержание могло вызвать у меня практический интерес, но настоящее влечение - никогда. Это всего лишь интерес, приуроченный к случаю, интерес к информации, которая может оказаться полезной. Это - инструмент в достижении желанной цели, подспорье в страсти, но отнюдь не ее предмет.

Взвесив все обстоятельства, я не думаю, чтобы в этой истории как-нибудь проявилось мое ревнивое, собственническое отношение к математике: разочарованное тщеславие, мне кажется, здесь ни при чем. Я не ощутил тогда ни досады, ни разочарования - просто желание узнать и понять, такое сильное за миг до того, внезапно меня покинуло. Ведь это были времена, когда я совершенно не собирался ничего публиковать, и даже не думал, что это еще когда-нибудь может прийти мне в голову. Я работал тогда не из тщеславия - то есть жадного стремления накопить побольше статей, ссылок и титулов, не ради общественного признания. Меня влекло вперед горячее желание, страсть ребенка, поглощенного игрой. И вдруг, в одно мгновение, ничего этого не стало! Разбирайтесь, кто может, а я опускаю руки… Увы - этого мне не понять.

43. Внутреннее убеждение говорит мне, что я, наконец, завершил обзор своей жизни как математика. Конечно, темы я не исчерпал: это заняло бы целые тома (при условии, что такие темы вообще «исчерпываются»). Но я к этому и не стремился. Я ставил себе целью понять, нет ли и моей вины в том, что в математической среде возникло известное настроение умов - «дух», который теперь ко мне временами

приносит ветер издалека - и если да, то в чем она заключается. Ответ на этот вопрос я нашел, и довольно. Заманчивая идея - пойти дальше по этой дороге, углубиться в неизведанное, порой лишь намеком затронутое в разговоре. На свете столько всего интересного: смотри, открывай, твори! Что же до моего прошлого как математика - мне кажется, я сделал все, что должен был сделать, чтобы его принять.

Конечно, углубившись в размышление о прошлом, я узнал бы немало интересного и о своем настоящем. В ходе этой работы я и так замечал почти на каждом шагу, до какой степени я все еще связан с прошлым. Я и не подозревал до тех пор, как мне важно, что я тогда собой представлял и какими были мои отношения с другими людьми - в особенности, с теми, с кем я так или иначе расстался. Несомненно, разобравшись в этом, я стал воспринимать свое прошлое по-новому: более отстраненно и как-то легче, быть может. Будущее покажет. Но не исключено, что связь сохранится, пока не догорит сама собою моя страсть к математике - до тех пор, пока я не оставлю своих занятий. Доведется ли мне пережить эту страсть? К чему гадать: меня это не заботит.

Одно время (больше десяти лет кряду) я думал, что эта страсть и впрямь утихла во мне. Вернее, я объявил сам себе, что ее больше нет. Но в тот день, когда я все же решил ненадолго отложить дела, чтобы продумать кое-что в математике, целый мир открылся мне заново! Три или четыре года после этого я был слишком поглощен другими делами, так что моя старинная страсть, вероятно, не находила лазейки, чтобы ко мне пробраться. То были годы, когда я учился много и напряженно - а все же знания, которые я получал тогда, были неглубоки. Позднее страсть к математике стала возвращаться ко мне наплывами, всякий раз тогда, когда я меньше всего ее ожидал. Приходя, она держалась по несколько недель, иногда месяцев; я же, со своей стороны, упорно не желал понять, что же со мной происходит. Ведь я решил раз и навсегда, что любовь к математике - вещь пустая, ни на что не годная, что отныне я перешагнул через нее и в прошлое нет возврата! Однако, эта «пустая, ни на что не годная» вещица, кажется, не расслышала моего приговора, да и я сам, похоже, сделался туг на ухо и не всегда внимал его суровому голосу.

В 1976 г. я открыл для себя медитацию, и в моей жизни появилась новая страсть. Как раз тогда же - казалось бы, парадокс - приливы

Самодовольство и обновление

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика