Читаем УРОЖАИ И ПОСЕВЫ полностью

математических раздумий. Название готово, остается лишь вывести прописными буквами: «Размышления о математике»! По крайней мере, так мне это вспоминается сейчас - как всегда, сквозь туман. И вспоминается на сей раз немного, нельзя не признать. Но вот что примечательно: в тот момент, когда я принимал решение вернуться в математику, я даже не остановился, не призадумался, куда я иду, что меня ведет и влечет - кажется, стоило лишь взглянуть… Пожалуй, мне хотелось бы сделать это сейчас, пока эта медитация, явившись неожиданно для меня, не подошла к концу: тогда я буду уверен, что она в самом деле завершена.

Вот вопрос, который сразу приходит на ум: о чем свидетельствует эта «примечательная» небрежность с моей стороны? Что это - «деликатность» хозяина, который ни за что на свете не желает нарушить (пускай одним лишь нескромным взглядом) естественный ход событий, ибо ему нет в том нужды и проч.? Или же это, напротив, знак того, что хозяин решился грубо вмешаться и повернуть дело в пользу математики? Быть может, его «личные пристрастия» на сей раз качнулись в другую сторону?

Стоит лишь черным по белому записать вопрос, как ответ приходит сам собой! Конечно же, это не мальчишка: тот, увлекшись игрой (которая, быть может, окажется длиннее других), не станет назначать себе время - играю, дескать, столько-то лет без передышки - и благоразумно рассчитывать, сколько страниц остается написать, чтобы вышло приличное собрание томов под крупным, внушительным заголовком! Это хозяин: он все организует и все предусматривает; мальчишка его просто послушался. Быть может, он большего и не попросит, тут не скажешь заранее - да это и неважно. Ведь желания мальчишки во многом зависят от обстоятельств, а их определяет прежде всего хозяин.

Итак, ясно, что выбор сделал хозяин. Впрочем, сейчас он проявляет некоторую мягкость: вот уже больше месяца эта медитация продолжается у него под носом, и он смотрит на нее вполне благосклонно. Правда, его доброжелательность отнюдь не бескорыстна: медитация принесла ему вполне ощутимый доход. Ее результат, записки, которые я сейчас составляю, станут отличным краеугольным камнем для башни, которую уже возводит для него работник-ребенок. Обтесывая, изящно шлифуя камни, мальчишка явно не унывает. Но что до хозяина, то его, похоже, слишком рано хвалить за «мягкость»! Несколько часов медитации три месяца тому назад и больше ничего - за полтора года! Пожалуй, это даже скуповато.

Однако, мне не кажется, что все это время я подавлял в себе стремление к медитации, что оно не находило себе выхода. Тогда, в декабре, мне хватило этих нескольких часов, чтобы получить ответ на свои вопросы и увидеть все, что нужно было увидеть. Ситуация прояснилась и уже тем самым стала иной. Возвратившись после этого к математике, я не бросил другого дела на полпути. Вспыхнул ли снова в моей душе, разрешенный было два года назад конфликт между «моей прежней и новой страстью» (только на этот раз они поменялись местами)? Думаю, что нет. Хозяин вправе иметь пристрастия, так он устроен - глуп тот, кто попытался бы ему это запретить (хотя кое-кто способен и не на такую нелепость…). Несправедливость хозяина - еще не признак конфликта, хотя нередко его причина. В моем случае, все тщательно взвесив, я уж готов простить хозяину недостаток мягкости.

Итак, остается последний вопрос: о «побуждениях» хозяина. Зачем ему понадобилось так резко переменить курс? Это произошло на удивление незаметно, но результат, если присмотреться поближе, ошеломляет.

45. Это немедленно возвращает меня к медитации, которую я начал в июле и закончил в декабре 1981 г. В предшествовавшие ей четыре месяца я бредил, и бредил неистово, одной лишь математикой. Из этого состояния, слегка безумного (впрочем, весьма плодотворного с точки зрения математики (39)), меня вывел приснившийся мне одной декабрьской ночью удивительный сон. Он был, как рассказ, как притча о том, что тогда происходило в моей жизни - притча о математическом неистовстве. Он произвел на меня невероятное впечатление: поток образов вливался в душу с какой-то яростной, неудержимой силой. Мораль притчи явилась в конце с ослепительной ясностью. Мне, однако же, пришлось провести два дня в напряженной работе, чтобы понять и принять ее очевидный смысл (40). После этого я уже знал, что я должен был сделать. За все шесть месяцев работы я к этому сну больше не возвращался. И все же, по сути, все это время я занимался лишь тем, что старался полнее охватить его смысл, усвоить его и им проникнуться. В первые дни после того, как этот сон мне приснился, я мог истолковать его лишь в общих чертах - грубо, поверхностно. Мне пред

Самодовольство и обновление

стояло прежде всего разобраться в том, как я сам - то есть хозяин во мне - воспринимал каждое из своих двух стремлений (к медитации и к математике), как мне тогда казалось, противостоявших друг другу.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика