Читаем УРОЖАИ И ПОСЕВЫ полностью

Благодаря медитации я становлюсь более открытым в отношениях с людьми: она помогает снять ненужную напряженность. Но случай обсудить с кем-нибудь труд медитации как таковой, поговорить о том, что мне открылось в ходе работы, выпадает нечасто. И вовсе не потому, что о таких «личных вещах» говорить не принято. Вот пример (быть может, не самый удачный): я могу обсуждать то, что в данный момент интересует меня в математике, только с коллегой, который к тому же достаточно осведомлен в соответствующей области - и то при условии, что его научные интересы совпадают с моими. Мне доводилось годами увлеченно работать над теми или иными математическими вопросами, не встречая вокруг никого, с кем я мог бы поделиться своими мыслями (я, впрочем, и не искал таких встреч). Но если бы я нарочно постарался, то, без сомнения, нашел бы подходящего собеседника - разве что мне просто не повезло бы в силу каких-либо особых причин. Я знаю наверное: если что-то живое и настоящее пробудило мой интерес, значит, в свой срок оно позовет за собой и другого, а то и многих других математиков. Когда это будет - через десять ли, через сто лет - по сути, не так уж важно. Это придает смысл моему труду, даже когда я работаю в одиночестве. Если бы в мире, кроме меня, не было математиков, если бы они вдруг исчезли навсегда - тогда, думается мне, математика потеряла бы для меня всякий смысл. Я почти убежден в том, что, спроси я об этом любого ученого, он подтвердил бы мои слова: наука живет связью между людьми и преемственностью поколений. И не зря я несколько раньше говорил, что для меня «тайна» в математике - лишь то, что еще никому не известно: здесь речь идет не о том, что может знать или не знать один человек, но о всеобщей, коллективной реальности. Математика - давняя общечеловеческая игра, из тех, что люди ведут уже которое тысячелетие.

Конечно, в случае медитации вопрос о «достаточной осведомленности» собеседника отпадает. Я сам до сих пор не накопил никакого

«предварительного запаса знаний» в этой области и сомневаюсь, что это когда-нибудь произойдет. Здесь важно одно: чтобы моему собеседнику, как и мне, было интересно об этом поразмыслить. То есть речь идет о том, любопытно ли человеку понять, что же на деле скрывается в душе (его ли, или его ближнего) за ширмой общепринятых приличий - едва ли у многих загорятся глаза при мысли о подобных сокровищах. Я уже успел убедиться в том, что «минуты откровения» в жизни человека, когда он видит воочию эти тайны за ширмой и хочет их разгадать, как правило, редки и мимолетны. Многие, что называется, «интересуются психологией»: то есть прочли Фрейда, Юнга и массу всего прочего - с тех пор их хлебом не корми, дай только поддержать «интересную дискуссию». Они как раз накопили определенный запас знаний - кто больше, кто меньше. Это то, что принято называть «культурой». Из таких кирпичиков они составляют представление о самих себе, с успехом заслоняющую от них действительность - картину, на которую они остерегаются бросить взгляд, точь-в-точь как те, кто интересуется математикой, летающими тарелками или рыбной ловлей. Это не та «осведомленность», не тот «интерес», о которых я говорил: одни и те же слова обозначают здесь вещи различной природы.

Иначе говоря, в такую игру, как медитация, играют поодиночке. Прежде всего нужно остаться наедине с собой: в этом суть медитации, ее природа. И дело не только в том, что самый труд медитации происходит в уединении: я думаю, то же верно для всякого творчества, в том числе и для совместной работы (даже если людей объединяет общая цель, все равно каждый трудится сам по себе). Но знание, которое приносит медитация - столь же «уединенное», как и труд, ведущий к нему. Это знание не может стать общим, и тем более его нельзя никому «передать»: его, как чувство, удается разделить с кем-нибудь лишь в самые редкие минуты. Этот труд, это знание восстают против общепринятых представлений, особенно глубоко укоренившихся в нас, вызывая тревогу у всех и каждого. Это знание, безусловно, можно изложить простыми и ясными словами. Подбирая их, я не перестаю учиться и узнавать: ведь это часть работы, и более чем увлекательная. Но те же самые слова, наткнувшись на стену безразличия или страха, ничего не скажут другому. Даже язык мечты, яркий, пестрящий бесконечными образами, беспрестанно обновляемый неутомимым, веселым Мечтателем, не разрушит этой стены.

Самодовольство и обновление

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика