Читаем УРОЖАИ И ПОСЕВЫ полностью

хоть на минуту и подумать о том, что сделали эти чувства и принципы со мной и с другими - в первую очередь, с моими собственными детьми.

Шевалле замечал, должно быть, что мои глаза нечасто находили себе применение: я так привык без них обходиться, что не чувствовал в них никакой нужды. Странно, однако, что он ни разу не дал мне этого понять. Быть может, он говорил мне об этом - но я не услышал? Или же молчал, рассудив, что незачем впустую тратить слова и силы? А может быть, он и не думал об этом: в конце концов, я сам должен был решать, сбросить ли с глаз повязку или завязать ее посильней!

12. Мне хотелось бы, опираясь на свой собственный (конечно, ограниченный) опыт, попытаться понять, когда и каким образом дух презрения так бесповоротно завладел нашим математическим миром. Говоря «математический мир», я думаю прежде всего о пресловутом «микрокосме», ставшем для меня когда-то вторым отечеством. В то же время, мне важно уяснить себе свою собственную роль в том, как печально преобразилась за последние десятилетия обстановка внутри нашей среды.

Думаю, я мог бы сказать без каких-либо оговорок, что в 1948-1949 гг. общая ситуация в кругу друзей-математиков, к которому я в то время принадлежал, не давала повода предположить направление будущих перемен. Как я уже писал, центром нашего небольшого «сообщества» тогда была группа Бурбаки, в ее первоначальном составе. Таких, как я, молодых новичков (как соотечественников, так и иностранцев), в этой среде встречали тепло и радушно. Презрения, да что там - хотя бы только снисходительных ноток в разговоре, не было и в помине. Люди, игравшие ведущую роль (по своему положению или просто благодаря высокому авторитету в научной среде), такие, как Лере, Картан или Вейль, никому из нас не внушали робости. Картан и Лере, воспитанные на старинный лад, отличались безупречными, я бы сказал, изысканными манерами. Остальные держались менее солидно - так что, глядя на этих чудаков, запросто врывавшихся к Картану, говоривших ему «ты» и в шумных обсуждениях математических вопросов пренебрегавших всякими церемониями, я едва мог привыкнуть к мысли о том, что каждый из них - почтенный профессор университета (с астрономической, по моим тогдашним меркам, зарплатой). А между тем, все это были знаменитые ученые, с мировой репутацией.

Три последующих года я, по совету Вейля, провел в Нанси. В то время там располагалось что-то вроде штаб-квартиры Бурбаки. Дель-сарт, Дьедонне, Шварц, Годеман (и, немного позднее, Серр) преподавали в местном университете. Нас, молодых математиков, там было немного: всего, может быть, пять-шесть человек. Я помню, чтобы не соврать, Лиона, Мальгранжа, Брюа и Берже. В Париже, конечно, в этом отношении жить было куда теснее. Зато в Нанси люди знали друг друга лично, так что и обстановка была более непринужденной; кажется, мы все были между собою на «ты». И все же, именно к тому времени относится первый и единственный на моей памяти случай, когда старший математик на моих глазах презрительно обошелся со своим учеником, совершенно не скрывая насмешки. Бедняга приехал в Нанси на один день, из другого города, чтобы поработать со своим научным руководителем. (Он, должно быть, готовил с ним диссертацию - которую, впрочем, позднее успешно защитил. Насколько я знаю, в математике он вполне состоялся и достиг определенной известности.) Сцена меня просто потрясла. Случись кому-нибудь заговорить со мной в таком тоне, я в тот же момент хлопнул бы дверью перед самым его носом! Самого ученика я до этого случая видел всего несколько раз, зато его «научного руководителя» хорошо знал, и даже был с ним на «ты». Для меня он был старшим товарищем; его широкая образованность (не только в математике) наряду с колким, язвительным умом, а также самоуверенной категоричностью суждений тогда (и еще долго потом, вплоть до начала семидесятых) производили на меня впечатление. В известном смысле я находился под его влиянием. Не помню, спросил ли я его тогда о причинах его поведения. Наедине с собой я рассудил примерно так: этот злосчастный ученик, должно быть, и впрямь ничего из себя не представляет, если заслужил, чтобы с ним так обращались. Казалось бы, если человек не способен к математике, это совсем не повод, чтобы над ним смеяться: ведь можно посоветовать ему заняться чем-нибудь другим и, главное, перестать с ним работать, раз уж ты им так недоволен. Эта мысль, однако, почему-то не пришла мне в голову. Между «слабыми» и «сильными мира сего» в математике я выбирал последних; принадлежность к данному лагерю раз и навсегда определила мой образ мыслей. Нельзя не оправдать старшего, авторитетного товарища, за счет «посредственностей», презирать которых, в общем, с его высоты вполне естественно. Демон презрения схватил меня за рукав, и я не

Самодовольство и обновление

отвернулся, не отказался вступить с ним в сговор. Перспективы меня вполне устраивали: ведь мне-то нечего было бояться! Меня уже приняли в ряды избранных и посвященных; на этом месте можно вздохнуть с облегчением (7).

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика