Читаем УРОЖАИ И ПОСЕВЫ полностью

Дьедонне. Однако, он и помыслить не мог бы о том, чтобы намеренно оскорбить собеседника. Дьедонне, вообще говоря, был известен категоричностью своих суждений, которые он подчас излагал во всеуслышание, отнюдь не стремясь сгладить острые углы. Но эти вспышки гнева, ставшие в свое время притчей во языцех, у него сходили на нет так же легко, как возникали. Что бы Дьедонне ни думал о научных заслугах того или иного математика, он никогда не позволил бы себе унизить его в разговоре.

Не то, чтобы я разделял чувства Дьедонне по отношению к его студентам. Но его позиция меня не отталкивала, и я тогда не попытался от нее отстраниться. Все это выглядело вполне естественно: казалось, грех и ждать других оценок ученической нерадивости от человека, влюбленного в математику. Под влиянием авторитета моего старшего коллеги, я стал воспринимать его позицию, как одну из возможных, даже разумных - постольку, поскольку речь идет о студентах и о преподавании в целом.

И я, и Дьедонне были, конечно же, до мозга костей проникнуты пресловутой «меритократической» идеологией. Она по-своему воздействовала на наши души; но мне кажется, что, как только вместо имен и ярлыков мы сталкивались с живым человеком, ее эффект заметно ослаблялся. Одним своим присутствием собеседник напоминал нам о том, что драгоценные нам «заслуги», такие весомые, неподдельные, - не более чем призрачные блестки в глазах настоящей реальности. Действительность подступала вплотную, и забытая связь с нею восстанавливалась. То же самое, должно быть, происходило с большинством наших коллег и друзей - как и мы, одержимых идеей своего духовного превосходства (воистину, распространенный синдром). Да и сейчас многих из них, скорее всего, личная встреча с человеком по-прежнему возвращает к реальности.

О Вейле в свое время также говорили, что его боятся студенты. Порой мне даже казалось, что его побаиваются иные коллеги, что называется, рангом пониже (или просто характером поскромнее). В пятидесятые годы такое случалось очень редко (а в нашем «микрокосме», уж конечно, ни с кем другим, кроме Вейля). Он любил иногда в разговоре напустить на себя этакий безапелляционно-надменный дух: этим он умел сбить с толку и самого уверенного в себе собеседника. Раз или два я с ним из-за этого ссорился. Впрочем, дело было, скорее, в моей

обидчивости, да и сама ссора была мимолетной. В его выходках я никогда не чувствовал нарочитого стремления задеть человека, его унизить. Скорее, он вел себя, как избалованный ребенок, находя (подчас злорадное) удовольствие в том, чтобы поддразнивать взрослых вокруг. Ему словно бы хотелось тем самым убедить себя в том, что он имеет над ними какую-то власть. Впрочем, в группе Бурбаки Вейль и впрямь пользовался поистине невероятным авторитетом. Иногда я не мог отделаться от чувства, будто он помыкает своими друзьями, как малыми детьми. И странно было видеть, как послушно идут эти умудренные годами младенцы на прогулку за своим воспитателем.

К пятидесятым годам, на моей памяти, относится еще только один случай, когда в разговоре с одним из моих коллег мне резко кольнуло слух настоящее, неприкрытое презрение. Человек, о котором я говорю, - математик из другой страны, мой тогдашний приятель и почти ровесник. Он был очень талантлив; таких ученых, как он, я встречал в жизни немного. Помню, что несколькими годами раньше, когда он уже успел неоднократно продемонстрировать свои блестящие возможности, я был поражен тем, с какой предупредительностью (мне она показалась тогда чуть ли не подобострастной) он спешил исполнить малейшее желание своего почтенного профессора. Сам он в то время был лишь скромным ассистентом. Его исключительные способности, однако же, быстро принесли ему репутацию мирового масштаба, а с ней и ключевую должность в весьма престижном университете. Там он уже управлял своей собственной маленькой армией учеников-ассистентов - так же самодержавно, как, в свое время, его научный руководитель. Так вот, при встрече я спросил его, есть ли у него ученики (то есть люди, с которыми у него хорошо продвигалась бы совместная работа). Он ответил с нарочитой непринужденностью (перевожу на французский): «Двенадцать штук!» Словом «штуки», надо полагать, он обозначал своих учеников и ассистентов. Конечно, двенадцать учеников сразу, одновременно работающих в твоем направлении - большая редкость среди математиков. Мой собеседник, несомненно, втайне гордился этим числом, что и пытался скрыть под маской деланного пренебрежения: дескать, всего двенадцать штук - так, пустяки; о мелочах стоит ли говорить! Этот наш разговор, судя по всему, относится к 1959 г.; к тому моменту меня самого уже не так-то просто было задеть за живое. С того дня, как я пришел в математику, прошло много

Самодовольство и обновление

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика