Читаем УРОЖАИ И ПОСЕВЫ полностью

Едва ли какая-либо особенность моего характера могла быть тому причиной. Кажется, ни поведением, ни манерой говорить я не выделялся среди своих коллег до такой степени, чтобы одним этим внушать ужас. К тому же, мне, наверное, сказали бы об этом в начале семидесятых, когда я вышел из роли математической знаменитости. Нет; все говорит о том, что страх был заложен в самой роли (а не в личных качествах того, кто принимал ее на себя). И мне кажется, что в начале пятидесятых годов такой роли, вместе с окружавшим ее ореолом страха (по сути, совершенно чуждого уважению), еще не существовало. По крайней мере, о ней тогда никто не слыхал в той среде, где в свое время (в 1948 г.) меня, случайного гостя, приняли, как своего - не задаваясь вопросом о том, кто я такой и заслуживаю ли с их стороны подобной открытости.

В кругу ближайших друзей и учеников мы, конечно же, всегда избегали лишних церемоний. Досадная неловкость прокрадывалась (иногда) в мои беседы с теми из коллег, с которыми я был не слишком знаком. И до самого своего «пробуждения» в 1970 г. я никогда не думал о ней, как о «страхе». Сталкиваясь с нею, я и сам всякий раз чувствовал себя несвободно - ив разговоре прилагал все силы, чтобы поскорее разделаться с этой помехой. Вот что, по-моему, примечательно: за двадцать лет обитания в нашей математической среде я ни разу не слышал, чтобы об этой проблеме кто-нибудь упомянул вслух (п). Вообще, недостаток внимания к вещам подобного рода - явление, весьма типичное для моего любезного «микрокосма». Впрочем, отдаешь ты себе в этом отчет или нет, но если незнакомый человек робеет перед тобой - значит, ему кажется, что ты сильнее. Приносила ли мне эта мысль тайное удовлетворение? Не знаю; на месте воспоминаний тех лет у меня, как обычно, сплошной туман. На сознательном уровне я, конечно, едва ли мог радоваться тому, что кому-то стало неловко подойти ко мне с вопросом. Но вот про себя, украдкой, наше самолюбие чем только не тешится. Бывает, что, стремясь лишний раз насладиться ощущением власти, «важная персона» нарочно старается своим поведением внушить робость собеседнику; этого, по крайней мере, со мной не случалось. За то, что в моей новой роли (известного ученого, авторитетного научного руководителя) не было места личному тщеславию, конечно же, нельзя поручиться. Но если я так охотно, со страстью, брался играть эту роль, то вовсе не за тем, чтобы произвести впечатление на «рядовых коллег». Нет: мне хотелось уважения «равных» - и, наверное, прежде всего старших товарищей. Я как бы старался оправдать их доверие: ведь пришел же я к ним в свое время откуда-то со стороны - а они приняли меня, как своего, ни о чем не спросив. Все остальное мне, в общем, было неважно. И мне кажется, что в нашей среде, по сути, все вели себя так же, как

я: пресловутой робости нарочно не замечали; как могли, старались ее рассеять - и в то же время, будто сговорившись, усердно делали вид, что такой проблемы просто не существует.

За десять-пятнадцать лет, истекшие с тех пор, многое изменилось - к худшему, насколько я могу судить. Кое-какие слухи доносятся до меня из «большого мира», да и нескольких сцен в лицах, которым я был свидетелем (а то и участником), хватило бы, чтобы раскрыть мне глаза. Я лишь взглянул - и увидел ясно, что дух презрения, пробившись где-то на задворках случайным сорняком, теперь заполонил целый сад. Печать одержимости этим духом я не раз с горечью узнавал на самых дорогих мне лицах - старинных друзей, давних учеников. Как будто беспричинное стремление огорошить, оскорбить, уничтожить своего ближнего я вдруг прочитывал в их глазах - и не мог поверить своим. И еще я чувствовал пронизывающий холод: как если бы страшный ветер незаметно для всех поднялся в дорогой мне земле, срывая плащи, сбивая с ног случайных прохожих. Он не разбирает «достойных» и «недостойных»; его отравленное дыхание равно жжет скромное призвание простого работника и страсть влюбленного гения. Окруженные страхом, как прочной стеной, за которой крик становится шепотом, слышат ли грохот разрушения мои прежние товарищи? Один из них, я знаю наверное, уже почуял неладное. Он как-то сказал мне об этом, но не сумел подобрать слов и не знал, как назвать беду. Еще один случайно, словно бы против воли, выглянул однажды из окна своей надежной крепости - только затем, чтобы на другой же день позабыть обо всем, что он тогда увидел(12). Ибо ощутить страшное дуновение и признать его силу значит принять необходимость сейчас же, не сходя с места, глубоко заглянуть в собственную душу.

15. Я не вижу смысла негодовать, громогласно возмущаться, глядя на бушующий ветер. Мне было бы лестно воображать, будто меня не коснулось его дыхание - но ведь это не так. Да и будь я чужд ему совершенно, кому из тех, кого я любил, принесло бы пользу мое искреннее негодование? Униженным оно ни к чему; всемогущие вершители судеб только посмеются.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика