Понятие «пространства», без сомнения, одно из самых древних в математике. Оно является до такой степени основополагающим для нашего «геометрического» понимания мира, что принималось на веру, практически не требуя описаний, в течение более чем двух тысяч лет. И лишь в прошлом веке понятие это постепенно освободилось из-под тирании непосредственного восприятия (как единственно пространства, нас окружающего) и связанных с ним традиционных (евклидовых) теоретических разработок, чтобы обрести теперь уже свои собственные динамику и независимость. В наши дни оно входит в число понятий, наиболее часто и повсеместно используемых в математике, безусловно известных всем математикам без исключения. Понятие, впрочем, изменчивое, не поспоришь; у него сотни, тысячи обликов, в зависимости от того, какую структуру ему придать. Есть из них богатейшие (как почтенные «евклидовы» структуры, или «аффинные», или «проективные», или еще «алгебраические» структуры одноименных «многообразий»; эти обобщают все предыдущие, придавая им гибкость), есть аскетически строгие. Последние таковы, что всякий элемент информации «качественной» из них словно бы исчез безвозвратно, и присутствует лишь намек на количественную сущность понятия
Как ни неуловима могла казаться сначала структура «чистого качества», воплощенная в «пространстве» (называемом «топологическим»), при отсутствии каких бы то ни было данных количественной природы (как расстояние между двумя точками, в частности), которые дали бы нам возможность уцепиться за сколько-нибудь привычное интуитивное представление о «величине», или «малости», — в течение минувшего века удалось наконец загнать эти пространства в плотные и гибкие ячейки языка, тщательно «скроенного из кусочков».
Более того, изобрели и изготовили целиком эталоны «метра», или «сажени», именно затем, чтобы, всему наперекор, навязать что-то вроде «мер» (названных «топологическими инвариантами») этим пространствам-спрутам, которые, подобно неуловимым призрачным городам, казалось, ускользали при всякой попытке нанести их на карту с масштабом. Правда, основная часть этих инвариантов, притом самых существенных, более тонкой природы, чем просто «число», или «величина». Скорее, они сами представляют собой более или менее прихотливые структуры, привязанные (посредством конструкций той или иной степени сложности) к пространству, о котором идет речь. Один из самых давних и важнейших таких инвариантов, введенный еще в предыдущем столетии (итальянским математиком