Читаем Усиленное обучение полностью

В усиленном обучении (Reinforcement Learning, RL) цель – максимизировать суммарное вознаграждение, что требует балансировки краткосрочных и долгосрочных выгод. Агент взаимодействует с динамической средой, принимая решения и получая обратную связь в виде наград или наказаний. В отличие от супервизированного и неуправляемого обучения, где задачи формулируются статично, RL динамически адаптируется к изменениям среды.

Агент в RL учится через процесс проб и ошибок, постепенно совершенствуя свои стратегии на основе полученного опыта. Награды могут быть немедленными или отложенными, что добавляет сложности: агент должен учитывать, что некоторые действия могут привести к положительным результатам только в будущем. Это делает RL особенно подходящим для задач, требующих стратегического планирования и долгосрочного мышления, таких как игры, управление роботами и оптимизация производственных процессов.

Балансировка краткосрочных и долгосрочных выгод

Одним из ключевых вызовов в RL является необходимость балансировки между краткосрочными и долгосрочными выгодами. Агент должен находить компромисс между немедленным вознаграждением и стратегиями, которые могут привести к более значительным наградам в будущем. Например, в игре агент может решиться на рискованное действие, которое, хотя и несет временные потери, потенциально приведет к крупной победе в долгосрочной перспективе.

Для решения этой задачи используются различные методы, такие как epsilon-стратегия в Q-Learning, которая позволяет агенту случайным образом выбирать действия для исследования новых стратегий, одновременно используя известные успешные действия для максимизации наград. Это помогает агенту избегать локальных максимумов и находить более оптимальные стратегии в долгосрочной перспективе.

Примеры применения

Усиленное обучение нашло применение в различных сложных и динамических областях. В играх, таких как шахматы и го, RL-агенты достигли уровня, превышающего способности человеческих чемпионов. В робототехнике агенты RL обучаются выполнять задачи, такие как автономная навигация и манипуляция объектами, адаптируясь к физическим ограничениям и непредсказуемым изменениям в окружающей среде. В управлении ресурсами и финансах RL помогает оптимизировать распределение ресурсов и разработку торговых стратегий.

Супервизированное, неуправляемое и усиленное обучение представляют различные подходы к решению задач машинного обучения, каждый из которых имеет свои уникальные цели и методы. В то время как супервизированное обучение стремится минимизировать ошибку предсказаний на основе размеченных данных, неуправляемое обучение ищет скрытые структуры в данных без меток. Усиленное обучение, с его уникальной способностью учитывать долгосрочные последствия действий и адаптироваться к динамическим условиям, открывает широкие возможности для разработки интеллектуальных систем, способных принимать эффективные решения в сложных и изменяющихся средах.

Эти отличия делают усиленное обучение особенно полезным для задач, где агенту необходимо принимать последовательные решения в динамической среде, таких как управление роботами, игра в сложные игры, оптимизация систем и т.д.

Глава 1. Примеры применения RL

Усиленное обучение (Reinforcement Learning, RL) находит применение в различных областях благодаря своей способности решать сложные задачи, требующие адаптивного поведения и долгосрочного планирования. В этой главе мы рассмотрим основные примеры использования RL, включая игры, робототехнику, финансовые рынки и управление ресурсами и оптимизацию.

Игры

Игры представляют собой одну из самых известных областей применения RL. Они предоставляют контролируемую среду, где агенты могут учиться через взаимодействие и получать четкую обратную связь в виде выигрышей или проигрышей.

AlphaGo

Одним из самых значительных достижений усиленного обучения в области игр стало создание AlphaGo от компании DeepMind. AlphaGo смогла победить чемпиона мира по игре Го, продемонстрировав огромный потенциал RL в решении сложных задач, требующих стратегического мышления. Го – древняя настольная игра, которая известна своей стратегической глубиной и сложностью. В отличие от шахмат, где количество возможных ходов ограничено, в Го игроки могут выбрать из огромного количества вариантов, что делает ее особенно трудной для анализа.

AlphaGo использует комбинацию глубоких нейронных сетей и методов усиленного обучения для изучения и оценки позиций на доске. Основная инновация AlphaGo заключается в использовании двух типов нейронных сетей: политика-сеть (policy network) и ценностная сеть (value network). Политика-сеть обучается предсказывать вероятности различных ходов, тогда как ценностная сеть оценивает позиции на доске, предсказывая шансы на победу для каждого состояния. Эта комбинация позволяет AlphaGo принимать решения, которые не только оптимальны в краткосрочной перспективе, но и учитывают долгосрочные последствия.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT
Третья мировая война. Какой она будет
Третья мировая война. Какой она будет

На протяжении первого десятилетия XXI века США, Россия, Китай и другие мировые державы развивают новый тип оружия, основанный на новейших технологиях и использовании информационных технологий и Интернета. Специальные подразделения готовят кибернетическое поле битвы с помощью так называемых логических бомб и лазеек, в мирное время размещая виртуальные взрывчатые вещества на территории других стран. Эта новая война — не игра и не плод нашего воображения, не альтернатива обычной войне. В действительности она способна увеличить вероятность более традиционных военных столкновений с применением огнестрельного оружия и ракет. Эта книга поможет понять, что представляет собой кибервойна, как и почему она развивается; проанализировать риски; подготовиться к ней и подумать о том, как ее контролировать. Для создания средств защиты от кибератак потребуется значительное время, но пока этого не произошло, мир подвергается новым серьезным угрозам ослабления международной стабильности и начала новой мировой войны — кибервойны.Как велись кибервойны и информационные атаки в Сирии, Эстонии, Грузии и Ираке? Как за пятнадцать минут и без единого террориста или солдата одержать победу над целым государством? Новое поле битвы — киберпространство.

Ричард Кларк , Роберт Нейк

Публицистика / Культурология / Политика / Прочая компьютерная литература / Образование и наука / Книги по IT