Дарвин, за век до Крика и Эдельмана изучавший морфологию усоногих раков, заметил, что две особи одного вида никогда не будут полностью идентичными; биологические популяции состоят не из подобных во всем организмов, а из различных, уникальных индивидуальностей. Естественный отбор может осуществляться только в такой популяции вариантов – сохраняя некоторые линии для последующих поколений, а иные обрекая на вымирание (Эдельману нравилось называть естественный отбор «огромной машиной смерти»). Почти с самого начала своей карьеры Эдельман понял, что процессы, подобные естественному отбору, многое определяют в жизни индивидуальных организмов, особенно высших животных: некоторые нейронные соединения, или констелляции, в нервной системе под воздействием жизненного опыта могут усиливаться, а некоторые – ослабевать и исчезать[87]
.Эдельман полагал, что базовым элементом отбора и изменения является не индивидуальный нейрон, а группы нейронов в количестве от пятидесяти до тысячи взаимосвязанных единиц – почему он и назвал свою теорию так: «теория отбора нейронных групп». Свою работу Эдельман считал завершением того дела, которое начал Дарвин; он дополнил дарвиновскую картину естественного отбора, действующего на протяжении многих поколений, схемой естественного отбора на клеточном уровне – в рамках жизни индивидуальной особи.
Безусловно, у нас есть некая предрасположенность к разным вещам, предопределенная генетическим кодом; в противном случае ребенок ни к чему бы не стремился, ничего бы не требовал, а потому вряд ли был способен выжить. Этот базовый набор предрасположенностей (например, к еде, теплу, контакту с другими людьми) направляет первые движения и стремления человеческого существа.
Кроме того, различные сенсорные и моторные средства существуют на элементарном физиологическом уровне: это рефлексы (например, реакция на боль) или автоматические мозговые механизмы (те, например, что контролируют дыхание и вегетативные функции).
Но, как полагал Эдельман, почти все остальное не подвергается программированию и не встраивается в генетический код. Крошка черепаха, вылупившись из яйца, уже готова отправиться в путешествие. Иное дело человек: после рождения человеческий детеныш должен создать систему перцептуальной категоризации (и прочих форм категоризации) и научиться ею пользоваться, чтобы понять окружающий мир; он обязан сформировать свой собственный, индивидуальный мир и освоить его. И принципиальную роль здесь играют опыт и эксперимент, а потому в рамках нейронного дарвинизма отбор описывается исключительно в соотнесенности с категорией опыта.
Реальная функциональная «машинерия» мозга, по Эдельману, состоит из миллионов нейронных групп, организованных в более крупные образования, или «карты». Эти карты, постоянно общающиеся в рамках непрерывно изменяющихся, невообразимо сложных, но всегда полных смысла схем, могут изменять свою конфигурацию в течение минут или даже секунд. Все это напоминает то, что Ч. С. Шеррингтон, имея в виду мозг, весьма поэтично назвал «магическим ткацким станком», где «миллионы мерцающих челноков ткут полную смысла, но никогда не равную самой себе пульсирующую ткань; вечно изменяющаяся гармония структур и субструктур».
Создание карт, которые избирательно реагируют на определенные элементарные категории, например, на движение или цвет в визуально постигаемом мире, могут вызывать синхронизацию тысяч нейронных групп. Некоторые виды картирования происходят в обособленных, анатомически фиксированных частях коры головного мозга, как в случае с цветом: цветовые ощущения преимущественно конструируются в зоне, называемой зоной V4. Но большую часть коры отличает пластичность – это так называемая плюрипотентная «недвижимость», которая может исполнять (в известных пределах) любые необходимые функции: так, зоны мозга, отвечающие у слышащих людей за аудиовосприятие, могут быть перенаправлены на обслуживание визуальных функций у людей глухих; таким же образом «зрительный» сегмент коры может исполнять иные сенсорные задачи у слепорожденных.