Читаем В начале было ничто. Про время, пространство, скорость и другие константы физики полностью

Формально температура вошла в термодинамику «задним числом». Надо сказать, что одна из особенностей термодинамики заключается в том, что каждый из ее законов (они часто называются «начала») обычно (а вот и еще одно слово-уловка) вводит в обиход какую-то новую характеристику, связанную с энергией. Так, первое начало термодинамики вводит величину, которая, собственно говоря, и является энергией; второе начало (мы рассмотрим его в главе 5) представляет характеристику, называемую энтропией. Оба эти закона разнообразными способами связаны с концепцией температуры. Создатели термодинамики постепенно поняли, что, хотя они достаточно строго сформулировали первый и второй ее законы и таким образом дали определения энергии и энтропии, само понятие температуры осталось без определения и не было введено каким-либо законом. Необходимо было сформулировать какой-то новый закон, более фундаментальный, чем первое и второе начала, – закон, который формализовал бы определение температуры. И, так как первое и второе начала уже заняли свои места, отцам-основателям термодинамики ничего не оставалось, как, стиснув зубы, назвать этот новый закон, логически предшествовавший первому и второму, «нулевым началом термодинамики». (Я не знаю никакой другой области науки, в которой потребовалось бы задним числом вводить подобный «нулевой закон»: разве что можно поискать нечто несформулированное, что затаилось в недрах ньютоновской классической механики.) Коротко говоря, нулевое начало является формальным определением температуры, и теперь мне придется объяснить вам его с виду довольно банальное содержание и рассказать, как этот новый закон выполнил свое назначение.

Представьте, что у вас есть три объекта, которые я назову A (к примеру кусок железа), B (ведро с водой) и T (а вы думали, C? облом…). Как вы сейчас поймете, у «термодинамистов», то есть тех, кто занимается термодинамикой, есть одна довольно странная черта: они приходят в настоящий восторг, когда отмечают, что ничего не происходит. Может быть, вы уже обратили на это внимание, когда мы обсуждали сохранение энергии в главе 2: они просто торчали (на свой абстрактный лад), когда заметили, что полная энергия Вселенной не изменяется. Вот это состояние эйфории и вылилось в первый закон термодинамики, который представляет собой просто конкретизацию закона сохранения энергии. Вот, к вящему их восторгу, еще один сценарий: допустим, вы привели A и T в соприкосновение и отметили, что ничего не произошло. Теперь допустим, что, независимо от первого вашего действия, вы привели в соприкосновение B и T, и вновь ничего не случилось. Так вот, нулевое начало термодинамики говорит, что если теперь вы приведете в соприкосновение друг с другом A и B (то есть поместите кусок железа в ведро с водой), ничего не произойдет. Это наблюдение имеет универсальный смысл: какова бы ни была природа A и B, если ничего не происходит при контакте каждого из них по отдельности с T, то ничего не произойдет и при контакте A с B. У «термодинамиста» это наблюдение вызывает почти непреодолимый оргазм и наполняет все его существо безграничным счастьем.

Надеюсь, что вы замечаете: объект T играет роль термометра, а вся описанная процедура может быть представлена как измерение температуры. То есть, когда A входит в соприкосновение с T и ничего не происходит (например, длина столбика ртути внутри стеклянной трубочки в составе объекта T не меняется), это значит, что температуру объекта A можно поставить в соответствие с длиной столбика ртути. Когда B входит в соприкосновение с T и ничего не происходит, это значит, что объект B имеет температуру, зарегистрированную при помощи T, и она такая же, как у A. Следовательно, A и B имеют одинаковую температуру, и мы можем быть абсолютно уверены, что, если они войдут в соприкосновение друг с другом, ничего не произойдет. Этот цикл, состоящий из последовательного отсутствия каких-либо событий, иллюстрирует способ, которым нулевое начало вводит в обиход концепцию температуры.

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература