Читаем В начале было ничто. Про время, пространство, скорость и другие константы физики полностью

Теперь мне надо связать введенное таким образом понятие температуры с его молекулярной интерпретацией в терминах распределения Больцмана. Ключевой момент, как я уже подчеркивал, заключается в том, что температура – параметр, который характеризует распределение молекул по доступным энергетическим уровням, причем параметр универсальный (а именно, независимый от субстанции). У объекта A (железа) имеется целый ряд энергетических уровней, и атомы железа рассеиваются по ним в соответствии с распределением Больцмана для данной температуры. У объекта B (воды) тоже есть свой набор энергетических уровней, и молекулы воды занимают их в соответствии все с тем же распределением Больцмана (определяющий параметр которого, температура, имеет то же значение, что и у объекта A). Когда A и B объединяются (железо погружается в воду), их энергетические уровни переплетаются друг с другом, как переплетаются пальцы ваших рук, когда вы сжимаете их. Распределение молекул остается неизменным, остается неизменной и температура, – в общем, ничего не происходит.

Распределение Больцмана включает в себя и, как все молекулярные интерпретации явлений, обогащает концепцию температуры. Теперь вы начинаете понимать, почему в этом распределении содержится объяснение как устойчивости материи в повседневном смысле, так и способности вещества изменяться при нагревании. При нормальных температурах распределение населенностей не распространяется на слишком высокие энергии: большинство молекул находятся на низких энергетических уровнях, где им остается разве что вяло осциллировать. Такое вещество будет долгоживущим. Когда температура поднимается, все больше и больше молекул попадает на высокоэнергетические уровни. В смысле энергии у молекул дела обстоят так же, как и у нас в нашей обычной жизни: когда ее много, дела идут. В частности, атомы могут быть выброшены из вещества; между ними могут образовываться новые связи; могут начаться химические реакции. На кухне, например, стряпня – это процесс, в ходе которого микроволновка или конфорка используются для выталкивания молекул на более высокие энергетические уровни, где достаточно большое их количество приобретет способность реагировать. Холодильники, наоборот, переводят молекулы на наиболее низкие уровни энергии, где они успокаиваются – и тем самым сохраняются от распада.

Из распределения Больцмана вытекает химический закон, относящийся к скоростям протекания реакций. Шведский химик Сванте Аррениус (1859–1927), удостоенный в 1903 году одной из первых Нобелевских премий, – он же, кстати, и помогал их учредить, – предположил, что скорость химической реакции растет с температурой некоторым особым образом, зависящим от параметра, называемого «энергией активации», причем этот параметр меняется от реакции к реакции [29]. Теперь этот закон называется законом Аррениуса. Если не вдаваться в детали (эта оговорка означает, что здесь есть много исключений), скорость химической реакции, как правило, удваивается на каждые 10 градусов роста температуры. Объяснение этому тоже дает распределение Больцмана: энергия активации есть просто минимальная энергия, необходимая, чтобы молекулы могли начать реагировать, и количество молекул, которые на это способны, растет с температурой, когда в соответствии с распределением Больцмана увеличивается населенность уровней с высокой энергией. Охлаждение (замораживание) дает противоположный эффект: по мере того как распределение Больцмана уводит молекулы на низкие уровни, все меньше молекул имеют достаточную энергию для вступления в реакцию, и реакция замедляется.

Закон Аррениуса имеет много следствий, заметных в повседневной жизни. Мы готовим пищу, поднимая энергию молекул до уровней, превышающих их энергию активации. Для этого мы поднимаем их температуру на много десятков градусов и таким образом ускоряем реакции, ведущие к разрушению структуры продуктов питания. Мы сохраняем пищу, сжимая профиль распределения Больцмана настолько, чтобы у молекул не оставалось энергии для реакций. Тело борется с болезнью с помощью жара – температура тела поднимается, нарушая хрупкое равновесие скоростей химических реакций, которые поддерживают жизнь и в нас, и в атакующих наш организм бактериях (вот уж где действительно нужно поддерживать равновесие!). Светлячки быстрее летают в теплые ночи, чем в холодные. В промышленности закон Аррениуса используется, чтобы запустить реакции, необходимые для извлечения полезного вещества из сырья. Весь мир вокруг нас представляет собой стройный хор химических реакций, разворачивающихся в тон закону Аррениуса, меняющих свои скорости и снова и снова воспроизводящих в разных модификациях одно и то же распределение Больцмана, основанное на анархии непрерывных температурных изменений.

* * *

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература