Читаем В океане энергии полностью

Сейчас нам хочется обсудить одно часто бытующее мнение. Мнение о том, что к квантовой физике следует прибегать лишь при переходе в микромир — мир молекул, атомов и электронов, где все очень маленькое, а поведение больших вещей можно описывать, ограничиваясь законами классической физики.

На наш взгляд, это совершенно неправильно. Вы уже имели случай убедиться, что такой «большой» закон термодинамики, как уравнение Клапейрона, по существу, представляет собой просто другую форму записи соотношения неопределенностей Гейзенберга — соотношения чисто квантового. Будучи рассмотренным как следствие соотношения неопределенностей, уравнение Клапейрона сразу теряет свою таинственность, а сказанное остается справедливым независимо от того, рассматриваем мы одну молекулу или несколько кубических метров газа.

При допущении непрерывной делимости энергии, как это делается в классической физике, энтропия теряет смысл, а значит, рушится вся термодинамика. Нечто подобное произошло в конце XIX века. Не существует отдельно классической и отдельно квантовой физики. Существует единая физика, которая описывает мир исходя из основополагающих представлений о конечной делимости, конечной скорости света, законе сохранения энергии и других исходных положений.

Осталось ответить на последний вопрос из числа поставленных в этой главе. Почему постоянная Планка представляет собой такое неудобочитаемое число? Да только потому, что, задавая единицу измерения энергии, человек выбрал один килограмм, т. е. массу, которую он легко может поднять, ощущая при этом, что делает дело, и один метр, т. е. расстояние, несколько большее его шага. С тем же успехом за единицу расстояния можно было бы принять, например, длину прыжка оленя, а за единицу массы — массу одной хвоинки, которую тащит муравей. Ясно, что при этом изменились бы значения всех физических постоянных.


О силах

Возьмите концы нитки и потяните в разные стороны, дернули посильнее — нитка разорвалась. Что послужило причиной разрыва нити? Нитка плотно прилегает к пальцам, вы тянете ее с силой, и она, в свою очередь, тоже с силой (сила реакции) врезается в пальцы (если нитка достаточно крепкая, пальцы можно поранить, но этого мы от вас не требуем), сама нитка натягивается все сильнее и наконец разрывается.

Теперь немножко пофантазируйте. Представьте себе, что вы проделываете все то же самое, но смотрите на происходящее через микроскоп, увеличивающий в сотни миллиардов раз. Нитка, как и все, что нас окружает, состоит из молекул. Те, в свою очередь, состоят из атомов. Атомы состоят из ядер и электронов. Радиус атомного ядра, по современным представлениям, имеет порядок 10~13 см. Расстояния между атомными ядрами при самой плотной их упаковке не бывают меньше Ю-8 см.

Вдумайтесь в эти цифры. Расстояние между двумя соседними ядрами в 100 тыс. раз превышает радиусы ядер. Если бы радиус ядра был равен 1 см, то расстояние между двумя соседними ядрами оказалось бы равным 1 км. Человек, обладающий самым острым зрением, не смог бы увидеть два ядра одновременно.


Какую картину вы увидели бы в микроскоп? Нитка представилась бы вам как множество крохотных частичек — ядер (электроны, по современным представлениям, вообще не имеют размеров), отстоящих друг от друга на гигантских по сравнению с их собственными размерами расстояниях. Так же выглядела бы и рука, вернее, та часть руки, которая, по нашему мнению, соприкасается с ниткой. Что самое интересное во всем этом? Ни одно из ядер, составляющих нитку, не только не соприкасается ни с одним из ядер, составляющих руку, но и не приближается к ним на расстояние, меньшее Ю-8 см, т. е. на расстояние, в 100 тыс. раз превышающее размеры самих ядер. Так как же передается сила от руки к нитке, если она действительно передается? Снова пресловутое дальнодействие? Перед тем как ответить на этот вопрос, отвлечемся немного в сторону.


Садимся за учебник

Берем учебник физики, читаем: «Основные положения динамики были сформулированы Ньютоном в его «Математических началах натуральной философии» (1678)... Первый закон Ньютона может быть сформулирован следующим образом: всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние». И далее: «Второй закон в формулировке, данной самим Ньютоном, гласит: изменение движения пропорционально приложенной силе и происходит в том направлении, в каком действует сила».

Вот откуда она взялась, эта самая сила! Но сначала разберемся с первым законом. Смотрите, как он выражается: «...тело сохраняет состояние покоя или равномерного прямолинейного движения...» Что значит «тело сохраняет»? Оно само сохраняет или таковы условия его существования во внешней среде? Из всего, что написано дальше в учебнике, вроде бы следует, что тело сохраняет именно само. Физическим телам присуще некое определенное свойство, названное инерционностью. Существует даже мера этого свойства, называемая массой. Все верно.

Перейти на страницу:

Похожие книги

Вечность. В поисках окончательной теории времени
Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни.Книга «Вечность. В поисках окончательной теории времени» не просто следующий шаг на пути к пониманию почему существует Вселенная — это прекрасное чтения для широкого круга читателей, которые интересуются физикой и устройством нашего мира.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии