Разберем до конца пример с растягиваемой ниткой. Когда концы нити входят во взаимодействие с руками, молекулы (точнее, атомные ядра молекул) пальцев взаимодействуют с молекулами нитки и обмениваются с ними количествами движения. Будем считать, что порции количеств движения от молекул пальцев к молекулам нити переносят некие частицы — кванты. Суть сейчас не в этом, а в том, что количества движения молекул нити изменяются. Эти изменения передаются от одних молекул нити к другим. Сумма количеств движения молекул нити изменяется и, если изменения достаточно велики, нить может разорваться.
Для нас разрыв нити представляется как разрушение чего-то непрерывного, разделение целого на составные части. На самом деле ничего подобного. Нить — это не целое, нить — это множество атомных ядер, расположенных друг от друга на расстояниях, в сотни тысяч раз превышающих их собственные размеры. Разрыв нити означает лишь То, что эти расстояния стали еще больше. Подобное может произойти в результате увеличения количества движения как отдельных ядер, так и всей их совокупности. Но что для этого обязательно требуется, вы теперь знаете: чтобы суммарное количество движения системы «человек плюс нитка» оставалось постоянным.
Отчего устал Атлант?
Трудно ли поднять штангу? Трудно, потому что она тяжелая — давит на руки с большой силой. Попробуем разобраться и в этом. Как свидетельствует древнегреческая мифология, Атлант, сын титана Япета и Климе-ны, родной брат Прометея, за попытку вместе с другими титанами захватить небо был осужден Зевсом держать на своих плечах небесный свод. Он порядком устал и поэтому охотно согласился на предложение Геракла заменить его ненадолго. Но отчего устал Атлант? Устают от работы, а, удерживая на плечах небо, Атлант никакой работы не совершал. Согласно классической механике работа совершается тогда, когда тело под действием силы проходит какой-то путь. А небесный свод оставался неподвижным.
Поднимая штангу массой, например, 200 кг на высоту около 2 м, штангист совершает работу 400 кгм (3922 Дж). Много это или мало? Видя, как напрягаются мускулы штангиста, мы, конечно, считаем, что много. Но, к примеру, поднимаясь по лестнице, т. е. поднимая свое тело на пятый этаж, вы совершаете работу 900 кгм. И никто не присваивает вам за это спортивных разрядов. Может быть, все дело в том, что по лестнице вы поднимаетесь медленно? Но и штангиста никто не торопит. Хотя вряд ли он согласится поднимать штангу медленнее, чем он это делает.
В чем же дело? Единое, как вам представляется, движение штангиста на самом деле состоит из сокращений и растяжений множества мелких мышц. Деформируясь, каждая мышца узнает о нагрузке и соответственно на нее реагирует. Чем дольше держать штангу на весу, тем больше будет мелких движений, тем больше совершенная мускулами работа, даже если штанга остается неподвижной. От этой-то работы и устал Атлант.
Работа, а не сила создает ощущения. Одно из замечательных достижений кибернетики состоит в том, что доказано — любая передача информации требует затрат энергии или совершения работы (это одно и то же). Если работа не совершается, информация отсутствует, следовательно, отсутствуют и ощущения. То же самое справедливо для температуры. Мы привыкли считать, что, если температура на улице низкая, ощущается холод, а если высокая — тепло. На самом деле важна не абсолютная температура, а разность температур между окружающей средой и человеческим телом. Если температура окружающей среды ниже температуры поверхности тела, тепло переходит от тела к внешней среде. Тело совершает работу, и именно эту работу, а не что-либо другое вы ощущаете как холод. Наоборот, если температура окружающей среды выше температуры тела, тепло перетекает от внешней среды к телу, и это вы' ощущаете как тепло. Если же температура внешней среды равна температуре поверхности тела, вы не ощущаете ничего — ни тепла, ни холода.
Не сила, а работа вызывает ощущение тяжести. В статике далеко не всякая задача может быть решена на основе рассмотрения равновесия сил. В простейшем случае, когда балка опирается на три опоры, уже нельзя определить, как распределяются силы между этими опорами. Такие системы называют статически неопределимыми. Для расчета статически неопределимых систем используют принцип виртуальных (возможных) перемещений. Задают системе малое перемещение и ведут расчеты из тех условий, чтобы сумма работ, совершенных внешними силами, оказалась равной сумме работ, совершенных силами реакции опор.