Читаем В погоне за красотой полностью

Действительно, далее будет говориться и о неевклидовой геометрии и об общей теории относительности, возникновение которой без особой натяжки можно рассматривать как логическое завершение всей истории с пятым постулатом.

Но мне кажется, самое интересное во всем этом не геометрия и не теория относительности.

В конце концов весь роман о пятом постулате столько же свидетельствует о силе человеческой мысли, сколько и об удивительной, почти анекдотической ограниченности математиков. Недаром, кстати, Макс Планк позволил себе, может быть, излишне категоричное, но верное в общем высказывание, что «по сравнению с теорией относительности создание неевклидовой геометрии — не более чем детская игра». Не будем, однако, раздавать медали. Главное — другое.



Самое важное, поучительное и, если хотите, трогательное, что та история, за которой мы попытаемся проследить, символична, как иллюстрация одного из лучших качеств, отличающих людей от прочих приматов и объединяющих все расы в единый вид. Как догадывается проницательный читатель, автор воспевает бескорыстное стремление разобраться: в каком мире, собственно, мы живем, как устроена наша вселенная? И объединяющий людей такого сорта интернационализм, интернационализм эпох, стран и национальностей, вечно противостоит столь же вечному братству мещанства, братству сатрапов, карьеристов, завоевателей, честолюбцев, стяжателей и худшей части футбольных болельщиков.

Если представить себе некую фантастическую картину, усадив в одной комнате за застольной беседой Евклида, Хайама, Гаусса, Лобачевского и Эйнштейна, то маловероятно, что в какой-то момент Николай Иванович Лобачевский испытал бы необходимость искать общих знакомых или провозглашать за отсутствием тем разговора: «Ну, а теперь — анекдотики».

А с другой стороны, нужно с неохотой признать, что анекдоты времен Евклида (с легким изменением колорита, конечно) почти полностью исчерпывают духовный арсенал многих и многих наших современников.

Впрочем, идеализацией как науки, так и ее жрецов тоже не стоит излишне увлекаться. Можно найти сотни и сотни примеров блестящих ученых — совершенно аморальных людей.

И может быть, самое привлекательное во всей нашей истории то, что как неевклидова геометрия логически завершается общей теорией относительности, так галерея математиков — как правило, не только замечательных по таланту, но и по-человечески интересных людей — замыкается Эйнштейном.

Но вернемся же к Евклиду!

Для начала следует добавить несколько крепких выражений в адрес всех скотов, истреблявших Александрийскую библиотеку. Останься она цела, мы знали бы о греческом и римском мире в десятки раз больше, чем сейчас.

Вероятно, мы бы знали и об Евклиде. Но, к сожалению, на сей день едва ли не самый основательный источник по Евклиду — Прокл Диадох Константинопольский — геометр, написавший детальнейший «Комментарий на первую книгу «Начал». И раз уж мы все время ссылаемся на источники, необходимо маленькое замечание.

Когда мы обращаемся к истории древнего мира, то невольно возникает тот же эффект, что при наблюдении горной цепи с самолета. Все сглаживается, расстояния кажутся малыми, детали исчезают полностью. Видна лишь общая картина.

И невольно все греческие математики представляются почти современниками. Поэтому нелишне, вероятно, вспомнить, что Прокл (412–485 г. н. э.) жил на семьсот лет позже Евклида. Временной интервал куда больше, чем разделяющий нас, скажем, с Иваном Васильевичем Грозным. Посему не так уж странно, что сведения о жизни Евклида у Прокла отрывочны и случайны.

Есть еще один автор, живший несколькими десятилетиями раньше Прокла, — александрийский математик Паппус. Он пишет о Евклиде как о мягком, скромном и вместе с тем независимом человеке. История с Птолемеем приводится как одним, так и другим. «Точные» же биографические данные практически основываются на заметках неизвестного арабского математика XII века: «Евклид, сын Наукрата, сына Зенарха, известный под именем Геометра, ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира…»

Все.

Человек бесследно растворился в веках. Осталась его работа.



«Начала» — повторимся — книга уникальная. Более двух тысяч лет она была главным и практически единственным руководством по геометрии для ученых как западного, так и восточного мира. Еще в конце XIX столетия во многих английских школах геометрию изучали по адаптированному изданию «Начал», и вряд ли можно найти более выразительное свидетельство популярности. В этом смысле конкурировать с «Началами геометрии» могут разве что библия и евангелие. Но в отличие от последних основа «Начал» — строгая и жесткая логика. Точнее — Евклид все время стремится к таковой.

Можно полагать, что Евклид был последователь Платона и Аристотеля. А Платон, как помните, требовал строго дедуктивного построения математики.

В фундаменте — аксиомы: основные положения, принимаемые без доказательства, а далее все должно быть безупречно логично выведено из этих аксиом.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика