Читаем В погоне за красотой полностью

Чтобы не слишком воспарять, проследим на конкретном примере одно такое доказательство.

Пусть к прямой восстановлены два перпендикуляра. Будем пользоваться радианной мерой измерения углов и вместо 90 градусов писать π/2.

Возможны два, и только два, варианта: они пересекаются в какой-то точке С; они не пересекаются вообще.

Докажем, что справедлива вторая теорема. Доказываем от противного.

Предположим, выполняется первое предположение: перпендикуляры пересеклись. Тогда образовался треугольник АВС[1]. Он замечателен тем, что внешний <В равен внутреннему <А. И конечно, внешний <А равен внутреннему <В.

Но существует теорема (ее истинность не будем сейчас подвергать сомнениям): «Внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним».

Наш треугольник теореме не удовлетворяет. Следовательно, такого треугольника быть не может. Следовательно, мы где-то ошиблись.

Проверяем рассуждение. Все правильно. Значит, ошибку мы сделали в самом начале, когда допустили, что перпендикуляры пересекаются.

Итак, перпендикуляры не пересекаются. Мы это доказали строго. Непересекающиеся прямые Евклид называл параллельными. И до поры до времени мы также будем придерживаться этой терминологии.

Подведем итог. Мы получили, что две прямые, перпендикулярные к общей прямой, параллельны. Вообще говоря, нам надо было бы еще доказать, что эти прямые не пересекутся и в нижней полуплоскости. Но это дословное повторение предыдущего доказательства, и время на него тратить не будем.



При доказательстве мы апеллировали к теореме о внешнем угле треугольника. Поскольку проницательный читатель, конечно, понял, что весь пример очень существен для дальнейшего, то без лишних разговоров докажем и эту теорему. Она предельно важна для нас. И вся история с пятым постулатом…

Прошу вас оценить детективный стиль рассказа — сам постулат еще никак не сформулирован.

Так вот, вся история с пятым постулатом завязалась именно с этой теоремы.

Пусть есть Δ ABC. Поглядите! Внешний <Свн выделен на нем дужкой. Докажем, что он больше любого внутреннего угла, не смежного с ним, то есть больше <А и больше <В. Сейчас мы проведем доказательство для <В.



Разделим сторону ВС точкой D пополам и проведем через А и D прямую.

На этой прямой отложим отрезок DE, равный AD, и соединим прямой точку E с точкой C.

Треугольники ABD и DEC равны. Действительно, отрезки AD = DE и BD = DC по построению. Углы CDE и ADB равны как вертикальные.

Значит, треугольники равны по известному признаку.

Но тогда <В (или угол АВС) равен углу BCE! И о радость! Ведь <BCE лишь часть <Свн.

Итак, весь <Свн больше (конечно, больше; целое всегда больше своей части) <В.



Остался под сомнением <А. Сразу чувствуется, что наше построение не очень поможет с ним расправиться, так как на чертеже <А рассечен на две части. Хорошо бы его поставить в положение <В. Может быть, провести прямую из вершины В и повторить и наше построение и доказательство? Но тогда <Свн окажется расположенным по-другому.

Полная аналогия с предыдущим была бы, если бы еще продолжить сторону ВС и рассматривать новый угол N.

Угол N, конечно, больше <А. Мы это уже только что доказали.

И здесь озарение! <N = <Свн как вертикальные.

Все.



Внешний угол треугольника больше любого внутреннего, не смежного с ним. Мы доказали это, и теперь оговорку в скобке в конце 36-й страницы можно зачеркнуть.

Если внимательно и дотошно проанализировать весь путь… Если проверить, какие аксиомы мы использовали для доказательства теоремы о внешнем угле… А для этого надо, конечно, проверить и те аксиомы, что были использованы при доказательствах теорем о равенстве треугольников и равенстве вертикальных углов.

Если все это проделать, то окажется, что практически мы использовали почти все аксиомы.

Но нигде, нигде по пути мы не использовали ни самого понятия о непересекающихся (параллельных) прямых, ни (тем более!) теорем или аксиом о таких прямых.

В этом каждый может без труда убедиться, вооружившись списком аксиом и проанализировав все Понятия, необходимые для теоремы о внешнем угле и всех вспомогательных теорем.

Наш экскурс уже затянулся; пора вернуться к аксиомам.

Во-первых, установим, каким логическим требованиям они должны удовлетворять.

Требований всего два:

1) полнота;

2) независимость.

Первое означает, что аксиом должно быть достаточно, чтобы доказать или опровергнуть любое возможное утверждение о наших первичных Основных Понятиях или о более Сложных Понятиях, образованных из первичных.

Второе — что мы не переусердствовали с выбором аксиом. Их у нас ровно столько, сколько надо. И ни одна из этих наших аксиом не может быть доказана либо опровергнута с помощью других.

Оба эти требования можно сформулировать в одной фразе. Аксиом должно быть необходимо и достаточно.

Необходимость — это требование полноты.

Достаточность — требование независимости.

Совсем-совсем грубо говоря, требования необходимости и достаточности означают, что аксиом должно быть ровно столько, сколько нужно. Не больше и не меньше.

Теперь можно сделать очень важное уточнение.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика