Подчиняясь общепринятому порядку, я привел все эти двенадцать равенств и несколько сожалею об этом. Обилие равенств может затуманить ясный вопрос. А вообще достаточно любого соотношения. Любого — на выбор. Одиннадцать остальных сразу получаются, если справедливо хоть одно. Мы «танцевали» от равенства <
Мы доказали, что, если выполняется любое из наших двенадцати равенств, прямые параллельны. Это и есть две теоремы Евклида: № 27 и № 28.
Кстати, теперь уместно вспомнить, что теорема о параллельности двух перпендикуляров к общей прямой — первая теорема, доказанная в этой книге, — есть частный случай нашей теоремы о параллельных.
Доказав теорему, геометр всегда исследует обратную теорему. В обратной теореме данным считается то, что доказывалось в прямой, а доказывается, естественно, то, что в прямой считалось данным.
С прямыми и обратными теоремами связана одна из самых распространенных логических ошибок
Как опровергающий пример я могу привести известное рассуждение капитана Врунгеля, которое бережно берег в памяти много лет на этот случай.
Всякая селедка — рыба.
Всякая рыба — селедка.
В некоторых традициях популярной литературы следовало бы еще добавить, что этот пример имеет шутливый характер. Но от этого я все же воздержусь.
Примеры из геометрии (евклидовой):
I. Если в треугольниках
I. Если Δ
II. Два перпендикуляра к общей прямой параллельны.
II. Если две параллельные прямые пересекаются третьей, то они перпендикулярны к ней.
III. Если Δ
III. Если для треугольников
В примере IV мы в честь номера объединим сразу четыре теоремы.
IV. Если Δ
то 1) <
2) высоты,
или медианы,
или биссектрисы углов
IV. Если в Δ
1) <
2) высоты,
или медианы,
или биссектрисы углов
В этих примерах все прямые теоремы правильны. В каких случаях справедливы и обратные теоремы, читателям предоставляется возможность установить самостоятельно.
Любопытно, между прочим, что зачастую хотя обратная теорема совершенно правильна, но найти ее доказательство несравненно сложней, чем для прямой. Понятно, такой случай есть и в наших примерах.
Теорема 2 из примера IV — равенство биссектрис в равнобедренном треугольнике — доказывается очень несложно. Обратная же (раскроем секрет — абсолютно верная теорема) — довольно хитрая геометрическая задача.
После доказанной нами теоремы о параллельных, естественно, проверить обратную теорему. Сформулируем ее.
Обратная теорема о параллельных взята Евклидом как постулат V. Если же придерживаться цитатной точности, то у Евклида пятый постулат записан в чуть отличном виде.
Напомним определение, открывающее эту главу. Оно стоит этого.