До своего возвращения в Нью-Йоркский университет Джимми работал в Рокфеллеровском университете с бактерией кишечной палочкой (
Джимми оказал мне неоценимую помощь на этом втором большом этапе моего становления как биолога. На наши исследования повлияли работы Луиса Флекснера, показавшего за несколько лет до этого, что долговременная память у мышей и крыс требует синтеза новых белков, а кратковременная память не требует. Белки – главные работники клетки. Они составляют ее ферменты, ионные каналы, рецепторы и систему транспорта. Поскольку, как мы выяснили, в долговременной памяти задействовано образование новых связей, не было ничего удивительного в том, что для образования этих связей требуется синтез новых белков.
Мы с Джимми занялись проверкой этой идеи на аплизии – на уровне сенсорного нейрона сифона и его синапсов на мотонейронах жабр. Если синаптические изменения сопровождают изменения памяти, то выявленные нами кратковременные синаптические изменения не должны требовать синтеза новых белков. Именно это мы и обнаружили. Что же тогда обеспечивает эти кратковременные изменения?
Кахаль показал, что нервная система состоит из нейронов, специфическим образом связанных друг с другом проводящими путями. Я наблюдал эту удивительную специфичность связей в простых нейронных цепях, обеспечивающих рефлекторное поведение у аплизии. Но Джимми отметил, что эта специфичность распространяется и на молекулы – соединения атомов, которые служат функциональными элементами клетки. Биохимики установили, что молекулы могут взаимодействовать друг с другом в пределах клетки и что происходящие при этом химические реакции связаны в определенные последовательности, которые называют биохимическими сигнальными путями. Такие пути передают информацию в виде молекул от поверхности клетки в ее внутреннюю среду, подобно тому как нервные клетки передают информацию друг другу. Но это “беспроводные” пути. Молекулы, плавающие внутри клетки, распознаются другими специфическими молекулами и связываются с ними, регулируя их активность.
Мы не только реализовали мой давний замысел поймать выработанную в ходе обучения реакцию в наименьшей возможной популяции нейронов, мы также поймали один из компонентов простой формы памяти в единственной сенсорной клетке. Но даже в единственном нейроне аплизии содержатся тысячи различных белков и других молекул. Какие из них отвечают за кратковременную память? Когда мы с Джимми начали обсуждать, как это можно узнать, мы сосредоточились на идее, что серотонин, выделяемый в ответ на электрический удар, может увеличивать выделение глутамата из сенсорного нейрона, запуская в нем особую последовательность биохимических реакций.
Последовательность биохимических реакций, которую мы искали, должна была служить двум принципиальным целям. Во-первых, эти реакции должны были преобразовывать непродолжительное воздействие серотонина в молекулы, сигнал которых сохранялся бы внутри сенсорного нейрона в течение минут. Во-вторых, молекулы должны были передавать сигнал от клеточной мембраны, на которую действует серотонин, во внутреннюю среду клетки – в особые участки окончаний аксона, задействованные в выделении глутамата. Мы подробно изложили эти мысли в своей статье 1971 года, опубликованной в
Что такое циклический АМФ? И почему мы сочли его вероятным претендентом на эту роль? Мне пришел в голову именно циклический АМФ в связи с тем, что было известно: небольшие молекулы этого вещества служат важнейшими регуляторами передачи сигналов в мышечных и жировых клетках. Мы с Джимми знали, что природа консервативна, поэтому механизм, используемый в клетках одной ткани, с большой вероятностью сохранится и будет использоваться в клетках другой. Эрл Сазерленд из Западного резервного университета Кейса в Кливленде в то время уже обнаружил, что гормон адреналин (эпинефрин) вызывает непродолжительные биохимические изменения на поверхности мембраны жировых и мышечных клеток, приводя к более продолжительным изменениям внутри клеток. Эти более продолжительные изменения происходят за счет повышения содержания циклического АМФ во внутренней среде клеток.