Читаем В просторы космоса, в глубины атома полностью

Леггемоглобин пока обнаружен только в корневой системе бобовых растений, и появляется он там лишь после того, как в корнях поселяются бактерии, участвующие в связывании азота воздуха. Роль аналогичных белков в жизни животного изучена детально — они участвуют в транспортировке и хранении кислорода, в сложных химических превращениях, снабжающих организм энергией. Например, гемоглобин, сосредоточенный в красных кровяных шариках нашей крови, «загружается» кислородом в легких, разносит его по всему организму, двигаясь вместе с кровотоком. Миоглобин запасает кислород в мышцах. В каждом из этих белков есть так называемая гемогруппа (сокращенно гем) — сложное многоатомное соединение с атомом железа в центре. Гем осуществляет обратимое связывание кислорода: легко присоединяет его и в нужный момент легко отдает. Имеется гем и в леггемоглобине.

Корреспондент.В какой последовательности ведется расшифровка пространственной структуры белка? Каковы основные этапы этой работы?

Исследователи. Таких этапов два: получение высококачественных кристаллов белка и сам рентгеноструктурный анализ. Оба этапа достаточно трудоемки, занимают многие месяцы, оба они, особенно получение кристалла, включают множество очень ответственных вспомогательных работ, длинные цепочки тонких и точных подготовительных операций. Это, кстати, характерно практически для всех современных биохимических и биофизических исследований…

Корреспондент.Назовите, пожалуйста, некоторые звенья одной такой длинной цепочки… Чтобы можно было хотя бы схематично представить себе, «как это делается»…

Исследователи. Возьмем, к примеру, получение кристалла. Работа началась в поле, началась со сбора клубеньков желтого люпина. Кстати, леггемоглобин существует в клубеньках всего несколько дней: когда растение отцветает, он очень быстро разрушается. Клубеньки сразу же, прямо в поле, замораживались сухим льдом и в дюаровых сосудах доставлялись в лабораторию. Затем начался цикл выделения самого леггемоглобина. Все операции этого цикла перечислить и то трудно. Вот лишь несколько: измельчение клубеньков, центрифугирование, предварительная очистка раствора, очистка раствора от низкомолекулярных соединений с помощью молекулярного сита, разделение белков на несколько фракций с помощью целлюлозных ионообменников, электрофорез одной из фракций с применением молекулярных сит для отделения леггемоглобина от похожих белков. Все эти работы включают вспомогательные химические реакции, контрольные операции. Все они проводятся при температуре 4 °C, чтобы уберечь белок от теплового разрушения. В итоге было получено 2 г чистого леггемоглобина, из растворов которого выращивались кристаллики длиной до 0,5 и даже до 1 мм.

Чтобы вырастить хороший кристалл, нужны месяцы, и здесь тоже есть масса тонкостей и сложностей. Но все это, конечно, так же как и химическая очистка белка, лишь подготовка к главному— к самому рентгеноструктурному анализу…

Корреспондент.Почти как на космодроме — уйма второстепенной, казалось бы, работы, а мелочей нет… Ну а после того, как кристаллический белок получен и на него, наконец, направлены рентгеновские лучи, после этого дело идет спокойнее, проще?

Исследователи. К сожалению, нет. На этом этапе тоже выполняется много ответственных операций. Во-первых, это получение самой рентгенограммы кристалла.

Рентгенограмма кристалла в виде фотографии с большим числом симметричных ярких точек — это лишь вспомогательный документ, иногда контрольный, а иногда просто иллюстративный. Само же рентгенографическое исследование кристалла осуществляется без «посредников», без видимой картинки. Делается это так. Счетчик Гейгера с очень малым входным отверстием тщательна исследует пространство вблизи кристалла, определяет интенсивность рассеянных кристаллом рентгеновских пучков.

С помощью прецизионного механизма счетчик перемещается и «прощупывает» каждый «рефлекс», измеряет его рентгеновскую яркость. Результаты измерений сразу же вводятся в вычислительную машину. Она же, кстати, управляет счетчиком, наводит его на «рефлексы», предсказывает их координаты. Измерения проводятся при разных положениях кристалла, когда рентгеновские лучи падают на него под разными углами. Выполненная нами работа — это первая очередь определения структуры леггемоглобина, которая предусматривала анализ около тысячи «рефлексов» от самого исходного кристалла.

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники