Читаем В просторы космоса, в глубины атома полностью

Интересный метод создания больших интерферометров предложили в 1963 г. советские радиофизики. Сущность метода состоит в том, что принимаемый сигнал прямо на месте преобразуют и записывают на магнитную пленку вместе с сигналами синхронизации, сверенными по эталонным атомным часам (рис. 8).



Таким образом получают как бы единую запись сигналов от двух или нескольких антенн — все эти сигналы привязаны к единой точке отсчета, к атомным часам, для которых как раз и характерна необходимая точность отсчета времени — что-то около 10-12 %. Потом все пленки с сигналами, привязанными к атомному времени, не спеша собирают и обрабатывают на вычислительной машине, которая учитывает все, вплоть до таких «мелочей», как вращение Земли и связанное с этим непрерывное перемещение наблюдателей по отношению к фронту волны. На основе этого метода уже не раз создавались межконтинентальные интерферометры (рис. 4), было сделано немало интересных открытий.



О некоторых работах, в которых участвовали наши радиоастрономы, рассказывает руководитель этих работ с советской стороны, руководитель лаборатории Института космических исследований АН СССР доктор физико-математических наук Леонид Иванович Матвеенко:

— В 1976 г. с участием советских исследователей было проведено семь циклов наблюдений на межконтинентальных радиоинтерферометрах. Это уже традиционные, плановые работы — они велись и раньше, будут проводиться в будущем. Первая работа 1976 г. (она длилась непрерывно более суток) прошла в феврале. В этот раз в интерферометр входили два радиотелескопа: в Хайстеке (район Бостона, США) и в Симеизе, в Крыму. Такие же циклы наблюдений были проведены в апреле и мае, но здесь уже работали радиотелескопы, расположенные в четырех точках планеты: в Тидбинбилле (Австралия, район Сиднея), в Мэриленд-Пойнте (район Вашингтона), в Биг-Пайн (вблизи Пасадены, США) и опять же в Симеизе. И наконец, пять циклов наблюдения по нескольку суток каждый (в июне, ноябре и декабре) с участием телескопов вблизи Бонна, в Хайстеке и Симеизе. Сезон 1977 г. в феврале открыл интерферометр Бонн — Симеиз — Онсала (Швеция).

Режим наблюдений, их программа очень насыщены и требуют исключительной четкости от всех участников работ. Обычно наблюдения одного объекта продолжаются 20 мин, затем пятиминутный перерыв на перестройку телескопа и снова двадцатиминутный сеанс. Сигнал, как правило, очень слаб, и его приходится долго «накапливать»; обычно период накапливания, этот квант измерений, составляет 300–400 с. Конкретные задачи наблюдений многообразны; об этом косвенно можно судить по числу исследовательских организаций — только в 1976 г. в наших работах участвовали Австрийская астрофизическая обсерватория, Институт Макса Планка (ФРГ), Массачусетский и Калифорнийский технологические институты, Смитсонианская, Хайстекская, Морская исследовательская и Национальная радиоастрономическая обсерватории, НАСА, Йельский университет (США), Крымская астрофизическая обсерватория и Институт космических исследований АН СССР. Все циклы наблюдений прошли удачно, «холостых выстрелов» не было. Это особенно радостно, потому что был впервые совершен трудный переход на очень короткую волну—1,35 см, что, в частности, позволило поднять разрешение интерферометра с 0,1 угловой миллисекунды до 0,05 миллисекунды. Оптический прибор с таким разрешением позволил бы из Москвы увидеть горошину во Владивостоке или увидеть с Земли яблоко на Луне.

Главные наши объекты — это природные мазеры, ядра галактик и совершенно загадочные до недавнего времени звездные образования — квазары.

В природных мазерах происходят в принципе те же процессы, что и в наших земных мазерах и лазерах; мощные источники энергии, скажем, излучения, идущие из области, где происходит рождение звезды, осуществляют «накачку» молекул окружающего газа — водяного пара или гидроксила; они-то и дают когерентное радиоизлучение — довольно острый и монохроматичный луч. До появления больших радиоинтерферометров это излучение приписывали большим областям пространства. Теперь же в этих областях удалось обнаружить очень компактные излучающие точки размером в десятые доли угловой миллисекунды.

Квазары долгое время представлялись этакими гигантскими полыхающими шарами с угловыми размерами в десятки и сотни миллисекунд (рис. 9). Напомним, что размеры, указанные в угловых единицах, — это есть тот телесный угол, в котором объект виден с Земли; так, например, размер Луны — 8 угловых градусов, Марса — 0,2 градуса. Чтобы перейти от угловых размеров к линейным, нужно знать расстояние до объекта. А оно не всегда известно достаточно точно, и астрономы характеризуют объект величиной, которую знают наверняка, — его угловым размером.

Но вернемся к квазарам.

У некоторых квазаров стали обнаруживаться детали, такие, например, как огромный (угловые размеры — около 20'') выброс материи («хвост») у квазара ЗС 273. Затем межконтинентальные интерферометры позволили увидеть достаточно мелкие детали квазаров (рис. 9—11).



Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники