Читаем В просторы космоса, в глубины атома полностью

Работы эстонских астрофизиков, особенно в сочетании с анализом фотографий галактических корон, как никогда ранее, приковали внимание исследователей к проблеме «скрытой массы». Резко усилилась аргументация того, что она существует и существует именно вокруг галактик. Получалось, что видимые эллипсы или спирали галактик — это лишь небольшие светящиеся части каких-то огромных невидимых массивов, что мы до сих пор видели лишь косточки огромных плодов, зреющих в бескрайних просторах космоса.

Настал момент собрать наблюдательные факты и попытаться представить себе, из чего же состоят короны галактик, в каком именно виде могла бы существовать в них «скрытая масса».

Если не входить в противоречие с наблюдательными данными о массе, светимости и цвете галактических корон, то можно сделать несколько предположений о их составе. Это мог бы быть ионизованный газ, нагретый до нескольких миллионов градусов и собранный, возможно, в отдельные облака. Или сравнительно легкие звезды, масса которых меньше 30 % от массы Солнца. Или карликовые скопления звезд, а может быть, даже карликовые галактики. Или, наконец, это могли бы быть так называемые умершие звезды — потухшие белые карлики, нейтронные звезды или даже «черные дыры». Данные о мягком рентгеновском излучении свидетельствуют, что в коронах спиральных галактик большого количества ионизованного газа, по-видимому, нет, а вот у эллиптических галактик массивные газовые короны вполне возможны. Что касается кандидатуры карликовых звезд, то здесь мог бы внести ясность поиск их в окрестностях нашего Солнца; чтобы карликовые звезды обеспечили расчетную «скрытую массу», их должно быть довольно много — примерно одна звезда на куб со стороной 15 св. лет. Эти звезды должны двигаться со скоростями более 100 км/с, и, по-видимому, они очень бедны тяжелыми элементами. Найти эти карликовые звезды будет не так-то просто. Во всяком случае, пока неясно, как их можно будет отличить от звезд слабой светимости, которые входят не в корону, а в само «тело» галактики.

«Скрытая масса», если существование ее будет доказано, должна заметно повлиять на наши представления об устройстве мира, об истории его развития и прогнозах на далекое будущее.

Видимая нами Вселенная, как установлено, расширяется, но этому расширению препятствуют силы взаимного притяжения ее «деталей», гравитационные силы. Противодействие тем сильнее, чем больше масса Вселенной, чем выше средняя плотность ее вещества. Если окажется, что плотность превышает 10-29— 10-30 г/см3—это значение называют критическим, — то гравитационные силы рано или поздно остановят расширение Вселенной, а затем заставят ее сжиматься. Известная нам масса Вселенной дает среднюю плотность около 3 % от критической, а значит, перспективу безостановочного расширения. По некоторым имеющимся в литературе оценкам «скрытой массы», она повышает среднюю плотность вещества во Вселенной до 20 %, а по иным оценкам, даже делает ее больше критической.

Наше представление о далеком прошлом Вселенной, о ее первых шагах мало зависит от того, будет обнаружена «скрытая масса» или не будет: основные модели мира вначале ведут себя одинаково при любой массе. Но зато она должна сильно влиять на более поздние события, и прежде всего на ход образования галактик. И конечно же, от того, есть «скрытая масса» или нет, а если есть, то сколько ее, сильно зависит все то, что сейчас происходит во Вселенной.

Вот, оказывается, с какими проблемами связан поиск «скрытой массы». Возраст и происхождение галактик… Стабильность звездных систем… Будущее Вселенной, беспредельное ее расширение или сжатие, которое придет на смену наблюдаемому в наши дни разбеганию галактик… Насколько же окончательными можно считать нынешние данные о «скрытой массе»? Насколько они достоверны? И можно ли повысить точность взвешивания Вселенной? С этими вопросами мы обратились к доктору физико-математических наук Я.Э. Эйнасто.

— Сначала скажу о работах, уже выполненных. Еще несколько лет назад, анализируя сдвиг спектральных линий в оптическом и радиодиапазоне, наша группа исследовала скорости движения ветвей некоторых спиральных галактик. Анализ этих скоростей показал: в движении должны участвовать массы, во много раз большие тех, которые могут быть у видимой части галактик. Следующим объектом изучения стали очень распространенные во Вселенной пары галактик, вращающиеся относительно некоторого центра. В первый период этой работы мы проанализировали около 110 таких пар с самыми разными расстояниями между компонентами пары. Анализ скоростей вращения показал, что в таком вращении участвуют огромные невидимые массы, сосредоточенные в очень больших объемах. Слово «невидимые» здесь используется уже с учетом последних достижений фотографической техники: по нашим расчетам, «скрытая масса» должна быть значительно больше, чем могли бы содержать галактические слабо светящиеся короны, и занимает она значительно большие объемы. По предварительным оценкам, «скрытая масса» в двойных галактиках в 10 раз больше видимой.

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники