Читаем В просторы космоса, в глубины атома полностью

Еще вчера такие слова, как «астронавигация», «ориентация в космосе», «коррекция орбиты», загадочно произносили лишь самые образованные герои фантастических романов. Сегодня они в словарях, рассчитанных на школьника: нужно обязательно иметь представление обо всем этом, чтобы почувствовать, какая гигантская работа стоит за этим привычным теперь термином «космический полет».

Вот некоторые типичные режимы межпланетной станции на трассе перелета. Основной режим ПСО — постоянной солнечной ориентации (рис. 8), режим, при котором солнечные батареи направлены на Солнце, станция кормится его бесплатной энергией и пополняет свои энергетические запасы, подзаряжает аккумуляторы.



За соблюдением режима ПСО следит датчик Солнца, его можно представить себе как систему фотоэлементов с объективом (рис. 4, 5 цветной вклейки), этакий многоглазый фотоэкспонометр. При правильной ориентации солнечных батарей этот датчик направлен точно на Солнце, все его фотоэлементы одинаково хорошо видят солнечный диск и дают одинаковый ток. Но стоит только станции чуть отвернуться от Солнца, как равенство токов нарушается. И тут же в электронном блоке управления, куда сходятся токи от всех фотоэлементов, будет выработан сигнал поправки. А он включит нужные холодные реактивные микродвигатели (их основа — небольшой баллон со сжатым газом), и они вернут станцию на место.



По мере того как станция уходит от Земли, режим ПСО (ориентация только в одной плоскости, по одной оси) перестает устраивать радистов, им уже нужно, чтобы передатчики станции могли поддерживать связь с Землей через остронаправленную антенну. Эта антенна не разбазаривает радиоволны по всему свету, она излучает их узким пучком, напоминающим луч прожектора. А за этим стоит эффективное использование мощности бортового передатчика на больших расстояниях от Земли и, значит, возможность уменьшить массу самого передатчика, системы его питания.

Чтобы радиолуч остронаправленной антенны попал точно в Землю, станция по команде с Земли переходит из режима ПСО в режим ПСЗО — постоянной солнечно-звездной ориентации. Солнечные батареи по-прежнему нацелены на Солнце, но в плоскости этих батарей станция занимает уже не произвольное, а строго определенное положение. Его поддерживает второй оптический датчик — датчик звезды, который «держит» свою, разумеется, заранее назначенную ему звездочку, подобно тому как солнечный датчик «держит» диск Солнца. У режима ПСЗО есть одна тонкость — станция и Земля непрерывно движутся относительно Солнца, и при этом меняются углы между направлениями на Землю, на Солнце и на звезду. Приходится по ходу полета подправлять «точку зрения» датчиков с таким расчетом, чтобы остронаправленная антенна во всех случаях смотрела точно на Землю.

Но вот наступает момент, когда прерывается режим ПСЗО и производится одна из самых ответственных и сложных операций— коррекция орбиты. Уже точно измерены координаты станции и ее скорость, точно вычислено, в какую сторону и на сколько нужно подтолкнуть станцию, чтобы она не сходила с тропы. За дело берется сложный комплекс автоматики, в котором невидимые нити радиолучей связывают в одно целое бортовую аппаратуру и наземную. Станцию разворачивают в расчетное положение, на расчетное время включают мощный реактивный двигатель и, контролируя приращение скорости, точно отмеряют расчетную дозу ускорения. А когда коррекция закончена, особая система, которая запомнила, в каком положении станция находилась до разворота, возвращает ее в режим ПСЗО.

К этим крайне упрощенным описаниям стоит, наверное, добавить, что в системах ориентации, навигации и коррекции четко взаимодействуют многие приборы, элементы, блоки, что простая на первый взгляд операция, скажем, переход с малонаправленной антенны на остронаправленную, возвращение станции в режим ПСЗО или сеанс связи с Землей, — это длинная цепочка «включилась», «выключилась», «принято», «сработало», «проверено», каждое из которых должно выполняться четко, своевременно, надежно. И еще: за время полета станций «Венера-9» и «Венера—10» с ними было проведено более ста сеансов связи, на каждой станции прошли две коррекции и в заданный срок станции прибыли в заданный район — в район Венеры. О последних этапах полета межпланетных станций к Венере и их посадке на планету рассказывает доктор технических наук В. Е. Ишевский:

— Если можно, Валентин Евграфович, расскажите, пожалуйста, о том, из чего складывалось это волнующее событие — прибытие станции на Венеру…

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники