Читаем В просторы космоса, в глубины атома полностью

Радиоинтерферометры (РИ). Если собрать два-три радиотелескопа в единую систему, то можно получить значительно лучшую разрешающую способность, чем у отдельного инструмента. Такая система называется интерферометром (с. 96), в ней, по сути дела, с высочайшей точностью учитывают момент прихода радиоволн к каждой антенне и по запаздыванию одного из сигналов вычисляют радиоизображение источника, его размеры. Чем больше база РИ, т. е. чем дальше один РТ от другого, тем легче уловить разность хода, тем выше, лучше разрешение интерферометра. На Земле предельное расстояние между антеннами — 12 тыс. км (диаметр земного шара), на радиоинтерферометрах с такой базой, принимая радиоволны длиной около 1 см, уже удалось получить разрешающую способность 2·10-4 угловой секунды, т. е. 0,2 миллисекунды. Замечательный результат: была бы у нас такая острота зрения, мы увидели бы на Луне предмет размером с ботинок, а на Марсе могли бы рассмотреть детали рельефа размером в несколько километров.

Космический радиотелескоп (КРТ). Главный враг больших телескопов — сила земного тяготения — резко ослабевает по мере удаления от Земли. И поэтому в космосе можно строить большие антенны, в частности, большие рефлекторы, которые не будут деформироваться под действием собственного веса. Можно строить антенны, не расходуя тонны металла, как мы это делаем на Земле, антенны с очень точной геометрией, а значит, пригодные для приема на самых коротких волнах, вплоть до миллиметровых. Один из вариантов большого космического радиотелескопа разрабатывают советские специалисты. Великолепная идея КРТ объединила конструкторов, радистов, специалистов по строительным конструкциям, по космической технике. Рассчитано: диаметр рефлектора можно довести до 10 км, а возможно, и до 20 км; «фигуру» рефлектора можно будет сохранить с такой точностью, которая позволит принимать радиоволны до λ = 1 мм.

Космический радиоинтерферометр (КРИ). Имея два КРТ, можно построить радиоинтерферометр с огромной базой. Можно, например, увезти эти КРТ в две противоположные точки далекой околосолнечной орбиты, куда-нибудь за Марс, и пусть они себе вращаются вокруг Солнца на расстоянии 1–1,5 млрд. км друг от друга (рис. 6). Из двух таких плывущих в космосе антенн может получиться КРИ с гигантской базой и с совершенно уже невероятным разрешением — до 10-10 угловой секунды (10-7 миллисекунды), т. е. в миллион раз — в миллион раз! — лучше нынешних рекордных результатов. Имея оптический прибор с таким разрешением, мы могли бы с Земли рассматривать отдельные песчинки в марсианской пустыне.

Возможная реализация идеи

Модульная конструкция. Важную особенность КРТ отражают два слова, введенных в его название, — «неограниченно наращиваемый». Рефлектор КРТ должен собираться из отдельных модулей, они выводятся на орбиту в сложенном виде, автоматически раскрываются и стыкуются друг с другом (рис. 7).

При этом модулями можно наращивать уже работающую антенну. Основа модуля — каркас из металлических труб диаметром 75 мм при толщине стенок 0,5 мм. На каркасе крепится ажурная рабочая поверхность, изготовленная из более тонких трубок диаметром меньше 1 см. И наконец, на рабочей поверхности закреплен третий слой пирога — отражающая поверхность, скорее всего из тонкого металлизированного пластика (рис. 8).

Толщина всей конструкции, точнее, ее глубина — 10 м, хотя для рефлектора диаметром D = 20 км ее, видимо, придется делать более толстой, наращивая в глубину трубчатый силовой каркас. Основной модуль сборного рефлектора представляет собой равносторонний шестиугольник со стороной 200 м, рабочая поверхность — это сетка из треугольников со стороной 2 м, отражающие элементы — шестиугольники с диагональю 4 м. Расчеты показывают, что антенна такой конструкции при диаметре рефлектора D = 1 км будет иметь массу 250 т (это 12 таких космических аппаратов, как «Салют»), при D = 10 км — 25 000 т. Эти цифры не будут казаться чрезмерно большими, если подсчитать, что на 1 кв. м поверхности КРТ приходится масса всего около 200–300 г.

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники