Читаем В просторы космоса, в глубины атома полностью

Естественно, что при сборке модульного рефлектора возможны некоторые неточности. Кроме того, на антенну будут действовать небольшие гравитационные силы, световое давление, солнечный ветер, неравномерный нагрев. После сборки антенна с километровым рефлектором сможет работать на волнах не короче 50 см, а с десятикилометровым — не короче 2 м. Для работы на более коротких волнах в конструкции рефлектора нужно предусмотреть элементы, корректирующие взаимное положение модулей, скорее всего в пределах нескольких миллиметров. Коррекция нужна будет и сразу после сборки рефлектора, и в процессе его эксплуатации. Представить себе корректирующие элементы несложно — это могут быть, например, расположенные в местах сочленения модулей червячные механизмы с реверсивными электродвигателями. Команды на эти двигатели будут поступать с космического аппарата, управляющего всей работой КРТ. На управляющем аппарате будет система, которая лазерным лучом быстро осмотрит рефлектор и тут же выдаст команды на элементы, корректирующие положение модулей.

Наведение КРТ на радиоисточники. Форма рефлектора КРТ выбирается с таким расчетом, чтобы он мог без перемещения осмотреть звездное небо в пределах телесного угла 20°. В этих пределах можно двигать «луч зрения», перемещая облучатель, вместе с приемником размещенный на космическом аппарате (рис. 7, 10).

Несколько таких аппаратов-приемников позволят на одном КРТ сразу принимать сигналы нескольких космических радиоисточников. Принятые приемниками сигналы после некоторой предварительной обработки передаются на Землю по каналам радиосвязи — сейчас это может быть сделано сравнительно просто, радисты уже умеют поддерживать связь с космическими аппаратами, находящимися далеко за Юпитером.

Можно направить КРТ на любую точку небесной сферы, поворачивая рефлектор с помощью закрепленных на нем маломощных реактивных двигателей (рис. 11). В системе наведения и стабилизации могут работать реактивные ионные двигатели — в них тяга создается веществом (рабочим телом), которое выбрасывается за счет электрической энергии; а ее можно получить от атомных источников или от солнечных батарей. Для стабилизации КРТ с километровым рефлектором нужен суточный расход вещества 6,4 кг и мощность электропитания 200 кВт; для десятикилометрового КРТ эти значения в 1000 раз больше. На разворот километровой антенны за сутки на 180° уйдет 5 кг вещества; такой же разворот десятикилометровой антенны займет 5 суток и потребует 1,5 т рабочего тела.

Создание КРТ. Антенны больших радиотелескопов будут собираться на околоземных орбитах и в собранном виде перевозиться к месту работы, на далекие межпланетные орбиты. Перевозить КРТ нужно очень осторожно, разгоняя их медленно, с малым ускорением. Такая перевозка займет месяцы и потребует сравнительно небольшого расхода топлива — 2–7 % от массы КРТ. Чтобы уменьшить расход топлива и упростить разгон готового КРТ, можно собирать его на сравнительно высокой околоземной орбите, где силы земного тяготения невелики. Для антенны диаметром d = 1 км целесообразна' монтажная орбита не ниже 1000 км, для антенны диаметром d = 10 км — не ниже 30–50 тыс. км. Предполагается такая последовательность сборки: сначала блоки КРТ вывозят на низкую околоземную орбиту; затем их собирают в поезда и перевозят на монтажную орбиту; туда же на борт орбитальной станции прибывают монтажники. При стартах транспортных кораблей с интервалом в 2–3 дня на постройку среднего КРТ уйдут месяцы, а большого — годы. Это сравнимо со сроками создания больших зданий, морских судов, электростанций.

Стоимость КРТ. Если принять за основу стоимость такой большой космической программы, как «Аполлон», на которую было затрачено около 25 млрд. долларов, то окажется, что КРТ с диаметрами антенны 1 и 10 км обойдется соответственно в 3 и 25–40 % этой суммы, т. е. 750 млн. долларов (d = 1 км) и 6–9 млрд. долларов (d = 10 км). Это, конечно, очень приближенные оценки. Попутно отметим — постройка КРТ с пятикилометровым рефлектором обойдется примерно вдвое дешевле, чем наземная система с аналогичными параметрами. И вот еще что: сравнивая большие космические проекты, нужно учитывать не только расход, но и доход — учитывать, что именно тот или иной проект даст науке. Здесь, видимо, КРТ вне конкуренции.

Возможности КРТ
Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники