Но такой взгляд является крайне упрощенным и ошибочным. К сожалению, первичным и привычным во многих рассуждениях является стандартный энергетический подсчет, согласно которому причина должна быть энергетически выше, чем следствие. Увы, именно такой подход, когда-то привел великого Томсона (лорда Кельвина) к полному отрицанию того, что магнитные бури на Земле вызываются солнечной активностью. Он сопоставил энергию магнитного поля на Солнце в солнечных пятнах (величину которого он не знал, а оценил из ненадежных источников), затем (не зная ни о существовании солнечного ветра, ни о корональных выбросах массы, ни о существовнии магнитосферы) просто помножил эту величину на куб отношения размеров пятна к растоянию до Земли и получил настолько малую величину, что вопрос о возможности воздействия солненой активности на Землю показался решенным. Сегодня этот куръез вызывает просто улыбку – как пример добросовестного заблуждения великого ученого.
Наиболее распространенный сегодня механизм воздействия солнечной активности на погоду связывает воедино солнечную активность, вариации галактических космических лучей (ГКЛ) и облачный покров Земли. На первый (опять же энергетический) взгляд тут нет ничего общего. Ведь поток солнечного излучения не зависит от солнечной активности, естественно не зависит от нее и поток галактических космических лучей. Как же здесь возникает связь?
Этот красивый механизм для начала можно пояснить аналогией. Пусть где-то далеко в океане находится корабль. Оператор, находящийся в тысячах километров от корабля посылает сигнал «Открыть кингстоны». Корабль тонет. Обратите внимание, сигнал энергетически очень слаб, и посылается оператором путем энергетически слабого действия. Океан естественно тоже не изменился ни до, ни после этого события. А эффект для корабля огромный. Подобный же эффект возникает при любом включении рубильника или водопроводного крана. По-существу, это своего рода триггерный механизм.
В нашем случае схема этого механизма состоит в следующем. При увеличении солнечной активности повышается напряженность магнитного поля в гелиосфере, плотность солнечного ветра, количество корональных выбросов массы. Все эти факторы, воздействуя на магнитосферу Земли, препятствуют доступу галактических космических лучей (ГКЛ) к Земле. Это приводит к уверенно обнаруженной отрицательной корреляции между потоком ГКЛ и солнечной активностью (см. Рис. 4) Это первое звено цепочки.
Галактические космические лучи обычно ответственны за возникновение ядер коденсации в земной атмосфере, рост их потока приводит к увеличению облачности и влияет на глобальную электрическую цепь в атмосфере. Здесь связь положительная. Это второе звено цепочки.
Увеличение облачности уменьшает температуру Земли и наоборот. Здесь работают два эффекта (сокращение доступа солнечного излучени к Земле и парниковый эффект). Они могут действовать в противоположном направлении, но в целом отрицателная корреляция не вызывает сомнения (см. Рис.5). Это третье звено цепочки.
Таким образом, в результате последовательного действия всех трех звеньев этой цепи возникает положительная корреляция характеристик солнечной активности и температуры Земли (см. Рис. 6).
Отдельный (опять-таки энергетический) вопрос состоит в том, хватает ли вариации облачного покрова для существенного изменения инсоляции. Башкирцев и Машнич (ИСЗФ СО РАН) провели следующий простенький, но довольно убедительный, расчет:
• Солнечная светимость I=1367 Вт/м2
• Среднее альбедо облаков А=0,5
• По наблюдениям со спутников (ISCCP) длительная вариация глобальной облачности составляет ± 3% Это значит, что от минимума солнечной активности в 1986 году к максимуму в 2000 году глобальная облачность изменилась на 6%
• С учетом шарообразности Земли поток солнечного излучения, поступающий на 1 м2
земной поверхности, равен 1367/4=342 Вт/м2• Таким образом, поток солнечного излучения, достигающий поверхности Земли, изменился с 1987 г. до 2000 г. на
• ΔI = 342 * 0,5 * 0,06 =10 Вт/м2
.Заметим теперь, что МГЭИК, рассматривая вариации солнечной постоянной без учета изменений облачности, получает величину 0,12 Вт/м2
и заявляет, что нет оснований рассматривать влияния солнечной активности и связанные с нею изменения потока солнечной радиации как причину изменения климата. При этом по оценкам МГЭИК радиационный эффект воздействия всех парниковых газов на климатическую систему Земли оценивается в 2,6 Вт/м2. Таким образом расчет Башкирцева и Машнич в 4 раза превышает предполагаемый эффект парниковых газов и вполне может обеспечить наблюдаемые изменения климата.