Полезно особо акцентировать то обстоятельство, что физика — наука естественная, а следовательно — экспериментальная. Среди естественных наук физика — в силу фундаментальности объектов исследования и их свойств — наиболее формализована. Все ее конечные результаты естественным образом представляются в математической форме. Как следствие, первичное изучение физики нередко порождает у школьников и даже у студентов иллюзию «выводимости» или аксиоматич-ности физических законов. На самом деле, вся базовая информация в естественных науках поставляется экспериментом, им же проверяются, в конечном счете, любые теоретические модели.
Великий немецкий поэт и достаточно известный в свое время натуралист Иоганн Вольфганг Гёте к теории относился скептически. И как великий поэт мог это выразить в форме яркой и убедительной ("Фауст"):
Дословно: сера, дорогой друг, любая теория, но зелено золотое дерево жизни. В поэтических переводах всегда присутствует некоторая неточность, поэтому мы и приводим подлинный текст Гёте. (К сожалению, недостаток образования не позволяет автору проверить адекватность перевода Г. Гулиа цитируемого выше стихотворения Омара Хайяма.)
Гёте можно понять, если иметь в виду, что предметом его ученых занятий были в основном ботаника и минералогия. В этих науках, если можно вообще говорить о теории, ей отводится исключительно описательная и сугубо подчиненная роль. Но роль и место теории в физической науке отнюдь не сводятся к описанию и представлению результатов. Именно в силу высокого уровня формализации физики теория приобретает и определенную предсказательную силу, во-первых, в решении задач на базе законов, которые мы считаем с достоверностью установленными, а во-вторых, именно тогда, когда опыт дает основания усомниться в их достоверности либо требует установления границ применимости и степени точности физических законов. Тогда теория оказывается инструментом и средством построения гипотез, которые расширяют круг наших представлений и дают очередной толчок к развитию физической науки, но, в конечном счете, должны обязательно проходить экспериментальную проверку.
Высочайшим классом физической теории можно считать работы Ньютона (механика), Максвелла (электродинамика) и Эйнштейна (теория относительности). Во всех приведенных случаях теория строилась на базе немногочисленных и несовершенных экспериментов. Затем эксперименты становились все более и более точными и надежными, и оказывалось, что результаты их все лучше и лучше соответствовали теоретическим предсказаниям — пока не возникала необходимость в совершенствовании самой модели. Но, например, между механикой Ньютона и релятивистской механикой Эйнштейна — дистанция продолжительностью в 200 лет и огромный массив информации, с достаточной точностью адекватной именно механике Ньютона.
Хотелось бы, однако, подчеркнуть еще раз: при всей привлекательности физической теории как рода занятий — не только для самих физиков-теоретиков, но и для "состоящих при сем" писателей и журналистов, — все-таки главное содержание и сущность физической науки представляются экспериментом, и главная (во многих отношениях) часть сообщества физиков — физики-экспериментаторы. Последние, как правило, тесно сотрудничают с инженерами, и не так уж редко, работая рука об руку, они различаются лишь дипломами об образовании или, быть может, мен-тальностью — взглядом на проблемы, которыми им приходится заниматься.
По мере такого сотрудничества рождаются и новые технологии — как следствие переноса знаний сначала в прикладные дисциплины, затем — в опытно-конструкторские работы и, наконец, — в промышленные разработки. Роль инженера (в иных случаях — агронома, врача, зоотехника) при этом никак не менее важна, чем роль ученого. Представления же о том, что фундаментальная наука может быть "реальной производительной силой", еще недавно активно внедрявшиеся в сознание общества, или требования самоокупаемости науки, популярные сегодня, в лучшем случае наивны, на самом же деле — весьма и весьма вредны.
Если базой уже упомянутой современной научно-технической революции были достижения математики и физики твердого тела, то ее реализация обусловлена развитием программирования и компьютерных технологий соответственно. Нобелевская премия за разработку квантовых генераторов вручена Басову, Прохорову и Таунсу по результатам их работ первой половины 50-х годов, тогда как первый лазер был создан Мейманом лишь в 1961 г. (Правда, как раз в данном направлении авторы первоначальных работ впоследствии внесли большой вклад и в прикладные разработки.)