Уменьшение энтропии в изолированных системах второй закон запрещает: оно в принципе невозможно: Примеров таких воображаемых невозможных процессов можно привести много: это самопроизвольный переход теплоты от холодного тела с температурой Т2
к более теплому с температурой Т1 > Т2, например, закипание чайника с водой, поставленного на лед (или замерзание в жару воды в водопроводной трубе). Нетрудно видеть (рис. 3.5), что энтропия при этом уменьшалась бы, поскольку энтропия S воды в чайнике возрастала бы на Q/T1, а энтропия S льда уменьшалась на Q/T2. Двигатель, работающий на «концентрации тепловой энергии, отводимой из окружающего пространства» (т. е. производящий работу или электроэнергию из внутренней энергии равновесной окружающей среды)[53], относился бы к этой же группе нереализуемых систем. Действительно, получая некоторое количество теплоты QO.C. от среды при ее температуре TO.C. (а с ней неизбежно и соответствующую энтропию S = QO.C./TO.C., он выдавал бы некоторую работу, в которой энтропии нет. К чему это привело бы?Если бы вся теплота QO.C.
превратилась в работу, то энтропия исчезла бы совсем. Если же в работу L превратилась бы только часть теплоты QO.C., а остальную ее часть Q2 двигатель отдал бы обратно, то все равно отданная энтропия была бы меньше, чем полученная так как Q2 < QO.C. и S2 = Q2/TO.C. < QO.C./TO.C.Чтобы завершить знакомство с энтропией, остается затронуть еще один аспект этой замечательной величины — ее статистическую трактовку. Она была дана двумя великими физиками — Л. Больцманом (1844-1906 гг.) и М. Планком (1858-1947 гг.).
Они подошли к понятию энтропии с другой стороны, так сказать, «изнутри», от молекулярного строения материи. Больцман исследовал законы поведения всего множества молекул, составляющих взаимодействующие части системы, и установил, что существует непосредственная связь энтропии с тем состоянием, в котором эти молекулы находятся.
Каждая молекула обладает в каждый определенный момент определенной энергией, связанной с ее движением и взаимодействием с другими молекулами. Общая внутренняя энергия вещества представляет собой сумму энергий этих частиц. Поскольку молекулы постоянно находятся в хаотическом движении и взаимодействуют между собой, между ними происходит энергетический обмен, приводящий к тому, что энергия все время перераспределяется между ними. Поэтому каждый следующий момент соответствует уже другому микросостоянию системы с другим распределением энергии между молекулами.
Таким образом,
Изучить в такой ситуации хаоса и беспорядка, существующей в каждом микросостоянии, поведение каждой молекулы, чтобы предсказать ее поведение в дальнейшем, практически невозможно. Но это и не нужно: достаточно знать возможные варианты
Число
Но каково же будет состояние системы, определяемое общими характеристиками (плотность, энергия и т. д.), т. е. ее
Чтобы показать, на чем он основан, используем наглядный пример, приведенный чл.корр. АН СССР Л.М. Биберманом.
Пусть на плоском подносе расположены несколько одинаковых монет. Каждая из них может лежать только в одном из двух положений — гербом вверх («орел») или вниз («решка»). Поскольку оба положения совершенно равновероятны, каждая монета может лечь вверх орлом или решкой; заранее предсказать это невозможно.