Читаем Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии полностью

При таком подходе физическое тело (например, газ) рассматривается как множество молекул, поведение каждой из которых определяется случайностью. Мы не можем точно сказать, как ведет себя каждая молекула в отдельности (как, например, каждая монета в рассмотренном выше примере). Однако «общее поведение» молекул (так же как и число монет, находящихся в определенном положении) мы найти с определенной степенью вероятности можем. Эта вероятность, как мы видели, тем больше, чем больше число отдельных молекул определяет давление, температуру и энтропию газа или жидкости.

Вероятность верного предсказания таких общих величин, определяемых статистическими законами, как мы видели даже на простых примерах, практически равна единице, а отклонения от нее — нулю[56].

После появления первых статистических законов они сначала считались «второстепенными», «неполноценными». Сейчас статистические законы заняли в науке, в частности в физике, равноправное (если не преобладающее) положение по отношению к динамическим. Они столь же надежно предсказывают поведение систем (естественно, если количество частиц, входящих в множество, достаточно велико), как и динамические.

Поэтому второй закон термодинамики, имеющий статистическую природу, столь же надежен и «непробиваем», как и первый.

Попытки обосновать ppm-2, ссылаясь на «неполноценность» второго закона из-за его статистической природы, абсолютно безнадежны.

Пользуясь понятием энтропии, мы можем четко определить, какие процессы в принципе допускаются вторым законом термодинамики и какие он не разрешает. Очевидно, что к первым относятся все те, где энтропия S неизменна или возрастает, а ко вторым — те, где она уменьшается.

Рис. 3.7. Возможные переходы систем из одного состояния в другое. Переход слева направо возможен во всех случаях, справа налево — только в первом (процесс обратим)

Удобнее всего показать это графически (рис. 3.7). Слева условно в виде прямоугольников изображены исходные состояния (до проведения процесса), справа — конечные (после его завершения). Размеры каждого прямоугольника, показывающего состояние системы, соответствуют ее энергии; по закону сохранения энергии их площадь в конечном состоянии равна начальной. Чем меньше энтропия S системы, тем более эта система упорядочена. Линиями со стрелками на рисунке показано возможное направление протекания процессов; переход в обратном направлении невозможен.

Первый процесс — переход из одного полностью организованного состояния 7), соответствующего нулевой энтропии (обозначено штриховкой), в столь же упорядоченное состояние (2). Характерными примерами устройств с такими процессами могут служить механический редуктор, электрический трансформатор или двигатель. В предельном случае каждый из них может полностью преобразовать механическую работу или электроэнергию в работу или электроэнергию с другими, нужными характеристиками. Если же в системе будут потери (трение, тепловыделения от электронагрева), то переход системы в новое состояние будет сопровождаться некоторым возникновением энтропии (случай 2). Чем больше потери, тем больше будет ее значение (S'2 > S2 > S1 = 0).

Может быть и так, что система в исходном состоянии характеризуется некоторой энтропией S1, отличной от нуля (случай 3). Она может перейти как в состояние с такой же энтропией S2 = S1, сохранив исходный уровень неупорядоченности (идеальный процесс), так и в любое состояние с большей энтропией S'2 > S2 (реальный процесс).

Может быть и так (случай 4), что из одной системы образуются две (или из одного потока энергии два). Тогда полученная сумма энтропии должна либо быть равной исходной (идеальный процесс, S'2 + Sʺ2 = S1), либо превышать ее (реальный процесс, S'2 + Sʺ2 > S1). В этом последнем случае возможна, в частности, и ситуация, при которой один из конечных результатов процесса (часть системы или поток энергии) будет характеризоваться меньшей энтропией, чем исходное состояние. Но такое «облагораживание» (уменьшение беспорядка) в одной части неизбежно компенсируется равным или еще большим ростом энтропии в другой части. Здесь одна часть «выбивается в упорядоченные» за счет другой части, но в конечном результате общая энтропия опять вырастет.

Наконец, пятый случай. Здесь вначале либо имеются две системы с разной энтропией, либо подводятся два потока энергии: один в упорядоченной форме (S'1 = 0, работа), а другой — в неупорядоченной (Sʺ1 > 0, теплота). В результате получается система (или поток энергии) с общей энтропией S2, большей (в реальном процессе) или равной (в идеальном) энтропии Sʺ1.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука