Читаем Век генетики: эволюция идей и понятий полностью

В начале 80-х Р. Б. Хесин (1981, 1984) особо выделил три неканонические, неменделевские формы наследственной изменчивости: (1) цитоплазматическая наследственность, (2) эпигенетическое наследование локальных и общих изменений структуры хроматина и (3) упорядоченные изменения в локусах и участках хромосом, состоящих из повторов. По одной из современных оценок, лишь для трети всех больных с наследственной патологией можно дать исчерпывающее генетическое истолкование в рамках канонических форм наследования (Hall, 1996). Впечатляющий репертуар неканонического наследования множества патологий впервые собран и проанализирован в сводке В. Пузырева и В. Степанова (1997). Ввиду важных биомедицинских следствий, необходимо рассмотреть случаи неканонического наследования у человека на основе более общих теоретических позиций. В частности, исходя из представленной выше обобщенной концепции генома и принципа облигатности — факультативности в его структуре и функции.

Выше мы условились под геномом индивида (или его клеток) понимать всю наследственную систему. К ней относится не только определенный набор структурных ДНК и РНК элементов, но и характер связи между этими элементами, от которой зависит ход онтогенеза в данных условиях среды. Таким образом, для анализа изменчивости важны и структурный, и динамический аспекты организации генома, (гл. 4). В структурном смысле элементы генома естественным образом подразделены на две подсистемы: облигатные элементы (гены и их регуляторные комплексы в хромосомах и самовоспроизводящихся органеллах) и факультативные элементы, куда входят разного рода ДНК и РНК носители, количество и топография которых варьирует в клетках одного и того же или разных организмов. Вариации или изменения числа и топографии факультативных элементов, в отличие от мутаций, могут происходить закономерно, с большой частотой. Это своего рода оперативная память генома.

7.1. Мобильные элементы, ретровирусы и наследственные изменения

Среди факультативной части генома особое значение в процессах наследственной изменчивости имеют семейства мобильных генетических элементов (МГЭ). Их число и топография в хромосомах каждой особи уникально. Перемещаясь по геному, МГЭ встраиваются в области расположения генов и вызывают инсерционные мутации. У дрозофилы вида D. melanogaster, например, доля МГЭ в геноме составляет 12–15 % ДНК хромосом. Оказалось, что среди спонтанных мутаций этого вида до 70 % связаны с инсерциями, причем перестройки хромосом происходят в основном по местам локализации МГЭ. При некоторых условиях (стресс, изменение ядерно-цитоплазменных отношений, способов размножения) происходят упорядоченные перемещения определенных семейств МГЭ, меняется характер регуляции генома. Поэтому знание особенностей поведения МГЭ в генотипе имеет важное значение для выяснения механизмов наследственных изменений и генной регуляции.

Как обстоит дело в этом смысле у человека? На долю собственно генов у человека приходится не более 10 % ДНК хромосом (Баранов, 1996). Геном человека населяет специфическое для приматов Alu-семейство мобильных элементов. Они имеют размер около 300 н. п. Число их копий в геноме фантастично, около 500 000, что составляет примерно 5 % ДНК хромосом. Повторы расположены как по отдельности так и группами или кластерами. Alu-элементы относятся к разряду ретроэлементов и перемещаются с помощью образования РНК-копий. В клетках человека найдены их кольцевые ДНК-копии вкупе с другими последовательностями, а также копии Alu в местах генных и внутригенных дупликаций. Причины успешной амплификации и расселения семейства Alu в геноме человека (в отличии от других приматов) загадочны. Исходя из сопоставления последовательностей ДНК предполагается, что Alu-семейство в ходе эволюции возникло путем дупликации из более простого элемента длиной около 130 пар оснований (п. о.), который находятся в виде несколько сот тысяч копий в геноме грызунов (Хесин, 1984; Novick., et al., 1996).

В лаборатории Н. В. Томилина в структуре Alu-элементов обнаружена повышенная по сравнению с другими элементами генома концентрация сайтов связывания факторов транскрипции. Видимо, это может влиять на характер транскрипции соседних локусов и, стало быть, на степень выражения генов (Kazakov, Tomilin, 1996). Однако, здесь, возможно, действует принцип "слоненка Киплинга" (см раздел 5.6): экспансия Alu-элементов в геноме есть результат автогенетических, неселективных процессов, а затем они могут быть использованы в адаптивных целях в ходе коэволюции (Novick, et al., 1996).

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука