Авторы предвидели открытие эписомоподобных элементов у эукариот, прозорливо указывая в качестве их аналога на "контролирующие элементы", открытые МакКлинток. Ф. Жакоб и Э. Вольман, обсуждая взаимодействие эписом с геномом клеток хозяина, приходят к сходному с Дарлингтоном выводу, что наследственность и инфекция перестают быть несовместимыми.
С точки зрения рассмотренной здесь концепции, плазмиды представляют собой важный, но частный случай факультативных элементов генотипа. Интересно проследить воплощения или инкарнации фага лямбда в системе фаг — бактерия (Фаг-лямбда, 1975).
1. Состояние вирулентности, инфекционности — фаг проникает в клетку и приводит ее к гибели, лизису, так что из одной бактерии образуется 100–200 фаговых частиц;
2. Состояние профага — когда фаг интегрирован в хромосому, часть его генов активна и блокирует собственное размножение;
3. Облигатно-вирулентное состояние или утрата лизогенного состояния при повреждении или делеции в локусе
4. Облигатно-интегрированное в хромосому хозяина состояние при делеции локуса, контролирующего вырезание фага из ДНК хозяина;
5. Состояние плазмиды — при некоторых делециях фаг утрачивает способность образовывать белки оболочки, но сохраняет свойство репликации.
В рамках генно-инженерных работ на основе участия генома фага "лямбда" создано множество других удивительных конструкций.
6. Космиды — концевые фрагменты фага (cos-сайты), обеспечивающие упаковку в головку фага всей молекулы со встроенным посредине фрагментом чужеродной ДНК и участком репликации, взятым из бактериальной плазмиды. Такая космида при наличии целого фага-помощника способна проникать в клетку и реплицироваться в ней. В космиды упакован теперь весь разрезанный на фрагменты геном дрозофилы, а также многие части генома человека.
7. Химерный инфекционный агент, активный в отношении про- и эукариот, ДНК вируса полиомы введена в ДНК фага лямбда, и получился вирус-химера, способный вызывать лизис бактерий и рак у мышей (цит. по В. А. Кордюму, 1982, с. 224).
Рис. 7. Мутационные переходы между разными факультативными элементами и обмен генами между ними и геномом хозяина (по: Ф. Жакоб, Ф. Вольман, 1962).
Если К. Дарлингтон в середине 40-х годов высказал мысль о трудности строгого выбора между плазмагеном и вирусом, то исследования, выполненные в последующие два десятилетия утвердили эту мысль. Приведем такие примеры.
У бактерий условно выделяют штаммы мужского и женского пола. Способность мужского пола передавать часть своей ДНК и своих генов женским реципиентным штаммам зависит от факультативной F-плазмиды, которая способна к самовоспроизведению либо в автономном состоянии, либо будучи интегрирована в хромосому бактерии. Топография плазмиды в хозяйской клетке резко меняет свойство плодовитости последней и состав переносимых при конъюгации генов.
Когда плазмида встроена в геном бактерии, то способность клетки-хозяина передавать свою ДНК женским донорам возрастает в десятки раз, а сама рекомбинация происходит совершенно особым образом. F-плазмида способна включаться в хромосому клетки-хозяина в самых разных ее участках и в разной ориентации. При этом возникает большой набор штаммов с разными начальной точкой и направлениями переноса. Исключение фактора F из бактериальной хромосомы приводит к образованию различных автономных производных плазмид, несущих разные по длине фрагменты хромосомы клетки-хозяина, которые соседствовали с местом интеграции этой плазмиды. Некоторые производные варианты F-плазмиды несли в своем составе около четверти всего генома бактерии! (Стент, Кэлинджэр, 1981).
Фаг лямбда оказался подобным плазмиде плодовитости в смысле способности существовать и автономно, и во встроенном в геном состоянии. Но возможны и другие сценарии симбиоза. Фаг Р1 не интегрируется в хромосому бактерии, но стабильно сосуществует в клетках в виде низкокопийной плазмиды. Стабильность передачи в ряду поколений фага Р1 зависит от упорядоченной сегрегации по дочерним клеткам при делении бактерии. Фаг Р1 напоминает широкий класс автономных R-плазмид или плазмид резистентности, которые воспроизводятся автономно и несут в составе своей ДНК гены устойчивости к самым разным антибиотикам.
Как справедливо пишут Г. Стент и. Кэлинджэр, (1981), с эволюционной точки зрения бактериофаги можно рассматривать "как особый класс плазмид, накопивших наследственную информацию, необходимую для синтеза белковой сомы — головки фага, в которую включается генетический материал. Таким образом, эволюция фаговой ДНК привела к образованию инфекционных плазмид, которые в одеянии фаговых частиц способны переходить вне цитоплазмы и в таком виде переходить от одного хозяин к другому".