Цвет открыл тем самым метод разделения простым способом смеси различных веществ и разложения их на составные части. Этот метод разделения получил название «хроматографический анализ» —от греческих слов «хрома» («цвет») и «графо» («пишу» ). Открытие это находилось в забвении до тех пор, пока немецкий исследователь Рихард Кюн из Гейдельберга не открыл в начале 30-х годов этот метод заново. Оказалось, что самые различные химические вещества можно путем хроматографии разложить на составные части и что подобным же образом отдельные составные части можно идентифицировать. Если эти составные части бесцветны, то их местоположение в «колонке» можно распознать с помощью ультрафиолетовых лучей или реактивов, которые, как и при токсикологических анализах, ведут к образованию определенной окраски.
Наконец, оказалось, что «колонка» может быть заменена фильтровальной бумагой, на которой составные части исследуемых субстанций отделяются друг от друга аналогичным образом. Между 1950 и 1960 гг. новый способ взяла себе на вооружение и токсикология. Бумажная хроматография в области обнаружения алкалоидов стала, во всяком случае по признанию англичанина Кларка, «самым значительным событием со времен Стаса».
Когда бумажная хроматография укоренилась в токсикологии, охота за растительными алкалоидами и множеством их синтетических преемников имела уже более чем столетнюю историю. И эта охота представляла собой не рядовой акт в драме человеческих ошибок, усилий, триумфов, новых ошибок и новых триумфов, которым посвящена книга. Речь идет о решающем акте, который предопределил развитие всей судебной токсикологии. Тем не менее и он не последний.
В то время как шла борьба с алкалоидами, токсикологи научились распознавать действие многих других ядов и обнаруживать их. Из небольшого некогда ряда металломинеральных ядов эпоха химии и индустрии выковала почти необозримую по длине и ширине цепь. Она простерлась от соединений марганца, железа, никеля и меди до талия. В виде моющих и чистящих средств, дезинсектицидов или лекарств они попали в руки миллионов людей. Маленький ручеек газообразных ядов, таких, к примеру, как синильная кислота, также превратился в необозримый поток.
Возглавляла группу газов все еще окись углерода, пожиравшая год за годом тысячи жертв. За ней шел целый ряд сероводородных и сероуглеродных соединений вплоть до трихлорэтилена. Широкое распространение во всем мире получило и множество кислот и щелочей – от метилсульфата до салициловой кислоты, этого компонента жаропонижающего и болеутоляющего лекарства аспирина, который в течение десятилетий стоял на третьем месте среди ядов, применяемых самоубийцами, вслед за окисью углерода и барбитуратами.
Если взглянуть на развитие всех этих исследований в целом, то нельзя оспаривать, что из робких начинаний отдельных пионеров ныне выросла серьезная наука. И все же после всех усилий, триумфов и успехов с XIX в. остается нерешенным вопрос: достаточно ли доказать наличие яда в выделениях, крови, тканях тела живущих или умерших людей, чтобы распознать, идет ли в данном случае речь о жертве убийства с помощью яда, самоубийства, медицинского или профессионального отравления? Достаточно ли, как это подчас случалось, приблизительно определить количество обнаруженного яда, чтобы извлечь из этого столь же приблизительные выводы относительно того, какое количество яда получил потерпевший? Не следует ли поискать методы более точного определения количества обнаруженного яда? Не в этом ли заключается главная цель, венец всех усилий?
8
Развитие исследований мышьяка со времени дела Мари Лафарж. Атомные и радиологические исследования на предмет обнаружения мышьяка.