Задача удвоения куба. Построить отрезок такой, чтобы куб с таким ребром имел вдвое больший объем, чем заданный. (Иначе говоря: дан отрезок, построить другой отрезок, который будет длиннее данного раз).
Задача о квадратуре круга. Построить квадрат, равновеликий заданному кругу (или же наоборот: построить круг, равновеликий заданному квадрату)6
.Трисекция угла. Разделить угол на три равные части (не на две, как биссектрисой, а на 3).
Математики разных времен пытались эти задачи решать. Естественно, не упомянуто, но подразумевается, что надо решать эти задачи с помощью циркуля и линейки. И с помощью циркуля и линейки у них не получалось. Зато иногда получалось с помощью других инструментов. Архимед, например, кажется, придумал, как с помощью разных инструментов решать все три эти задачи. Правда, Архимед жил позже Евклида (мы до него еще не дошли), но смысл тот же.
Так вот, решения с помощью "чего попало" в стиле пифагореизма было запрещено, считалось читерским, некрасивым. Поэтому Евклид не включил в свой трактат даже самые изящные и красивые из таких решений.
На рис.6.3 мы видим решение Архимеда задачи о трисекции угла методом "вставки". Если вы совсем-совсем неподготовленный читатель, то следующий абзац без потери смысла можно пропустить.
Угол АОВ – исходный, который надо поделить на три равные части. Произвольным радиусом строим окружность с центром в точке О. Продлеваем прямую АО. Теперь берем линейку, отмечаем на ней отрезок, равный радиусу окружности. И прикладываем эту линейку так, чтобы она проходила через точку А и чтобы отрезок, "зажатый" между окружностью и прямой ОВ был равен радиусу (тому самому, который мы заблаговременно отметили на линейке). В таком случае, полученный угол СDO будет как раз равен трети исходного угла. (Углы, отмеченные 1 равны между собой, т.к. в равнобедренном треугольнике; углы, отмеченные 2 равные между собой и вдвое больше углов 1 (т.к. угол АСО внешний к треугольнику ОСD). Ну, и дальше сумма углов в треугольнике равна
Что тут используется? Почти что циркуль и линейка. Но только предлагается на линейке поставить засечку (отмечающую равный радиусу отрезок). Все. Так нельзя! Это не благородно, и недостойно.
Вот такие задачи Евклид так и не включил в свои Начала.
Кстати, древние греки не зря не могли найти решение с помощью циркуля и линейки в середине XIX века было доказано, что с помощью циркуля и линейки решить эти задачи нельзя, как ни исхищряйся.
Лекция 7
.
Архимед
Итак, «Начала» уже написаны. Доказательства почти на том же уровне строгости, как принято в математике сейчас. Геометрия на необычайно высоком уровне. Приложения математика находит в астрономии, музыке, зачатках теории перспективы. Т.е. приложения приняты внутри науки и искусства. "Извлекать выгоду" из науки не принято, недостойно – по соображениям почти религиозным, как мы помним.
Казалось бы, куда уж боле?
И тут на сцене возникает Архимед.
Архимед родился в Сиракузах, жил в Сиракузах, занимался математикой, механикой и астрономией в Сиракузах, а затем умер, защищая Сиракузы, в возрасте 75 лет.
Тут надо сказать, что Сиракузы – город на юге острова Сицилия (ныне это в Италии). В те времена был автономным греческим городом-государством, а вот вся остальная Сицилия уже была поглощена римлянами. Проходило время господства на мировой арене Древней Греции, наступало время господства Древнего Рима. Поэтому всю жизнь Архимеда Сиракузы были очень лакомым кусочком, за который постоянно сражались греки, римляне и карфагеняне. В связи с этим есть информация об Архимеде практически в любых книгах по истории того времени (ведь битвы и баталии в исторической литературе отражены очень хорошо!). Еще Плутарх, живший на рубеже I и II веков нашей эры, и писавший трактаты про историю того времени, обязательно писал об Архимеде.
А кроме того, уцелело довольно много сочинений, работ, чертежей самого Архимеда (и на русском языке есть отличная книжка с этими остатками [17]). Поэтому о том, чем этот невероятно гениальный человек занимался в науке, мы знаем довольно хорошо.
Отец Архимеда был известный в те времена астроном Фидий. И Архимед, таким образом, возможно, первый в истории потомственный ученый. Сейчас бывают целые ученые династии, а уж потомственные ученые – повсеместность /*
Рисунок 7.1: Архимед. 287–212 гг. до н.э.
Архимед вел переписку с разными известными учеными разных стран. И, возможно, это первая в истории научная переписка. С тех пор и поныне научная переписка – один из главных движителей науки.