Читаем Величайшие математические задачи полностью

По мере того как росла сумма математических знаний человечества, все большую роль в мотивации новых исследований стал играть еще один фактор: внутренние запросы самой математики. Если, к примеру, вы умеете решать алгебраические уравнения первой, второй, третьей и четвертой степеней, вам не нужно обладать очень уж богатым воображением, чтобы задаться вопросом об уравнениях пятой степени. (По существу, степень уравнения есть мера его сложности, но чтобы задать очевидный вопрос, не обязательно даже знать, что это такое.) Если решение не дается — как, собственно, и было, — то этот факт сам по себе заставляет математиков еще более усердно искать его, и при этом неважно, будет ли вожделенный результат иметь какую-либо практическую пользу.

Я не утверждаю, что практическое приложение не имеет значения. Но если какая-то конкретная математическая составляющая раз за разом возникает в вопросах, скажем, физики волн — океанских волн, вибраций, звука, света, — то понятно, что исследовать ее закономерности было бы полезно. Не обязательно знать заранее, какое приложение найдет новая идея: тема волн фигурирует во многих важных областях, так что серьезные результаты непременно где-нибудь пригодятся. В данном случае этим «где-нибудь» стали радио, телевидение и радары. Если кто-то придумает новый подход к тепловым потокам и без всякого математического обоснования предложит новый блестящий метод, то, безусловно, будет очень полезно разобраться во всем этом как в чисто математической задаче. И даже если вам нет никакого дела до тепловых потоков, результат обязательно пригодится где-то еще. Фурье-анализ, разработанный в ходе исследования именно этой области, оказался, возможно, самой полезной математической идеей всех времен. Это, по существу, основа современных телекоммуникаций: он обеспечивает работу цифровых камер, помогает реставрировать старые кинофильмы и звукозаписи, а его современное расширение использует ФБР для хранения отпечатков пальцев.

За несколько тысячелетий подобная взаимосвязь между практическим применением математики и ее внутренней структурой привела к тому, что они тесно переплелись и стали почти неотделимы друг от друга. Тем не менее математика делится на две области: чистую и прикладную. Это деление помогает оценить место математических открытий в структуре человеческого знания, однако оно довольно условно. В лучшем случае так можно различить два конца одного непрерывного спектра математических стилей и методов. В худшем — такая классификация вводит нас в заблуждение относительно того, что именно приносит пользу и что служит источником идей. Как и в других областях науки, силу математике придает сочетание абстрактных рассуждений и вдохновения, почерпнутого из внешнего мира. Говоря попросту, они питают друг друга. Разделить математику на две составляющие не просто невозможно — это бессмысленно.

Большинство по-настоящему важных математических задач — великих задач, которым посвящена эта книга, — возникли внутри математического поля в процессе своеобразной интеллектуальной медитации. Причина проста: это сугубо математические задачи. Математика часто представляется набором изолированных областей, в каждой из которых господствуют собственные методы: это алгебра, геометрия, тригонометрия, математический анализ, комбинаторика, теория вероятностей. Ее обычно так и преподают, и не без причины: четкое разделение тем помогает учащимся разложить по полочкам учебный материал в своей голове. И действительно, такое деление — вполне разумный способ понять в первом приближении структуру математической науки, особенно классической, давно устоявшейся. Однако на переднем крае исследований это четкое деление часто рушится. И дело не только в том, что границы между основными областями математики размыты, — в реальности их просто нет.

Каждый математик-исследователь знает, что в любой момент внезапно и непредсказуемо может оказаться, что проблема, над которой он работает, требует свежих идей из какой-то совершенно посторонней, на первый взгляд, области. Более того, новые исследования часто захватывают сразу несколько областей. К примеру, мои исследования сосредоточены по большей части на формировании структур в динамических системах — системах, которые изменяются во времени по определенным правилам. Типичный пример — движение животных. Лошадь при движении рысью раз за разом повторяет одну и ту же последовательность движений ног, и в этих движениях есть четкая закономерность: копыта ударяют по земле попеременно, диагональными парами. Иными словами, лошадь ставит сначала левую переднюю и правую заднюю ноги, затем правую переднюю и левую заднюю. О чем же эта задача? О паттернах, и тогда решать ее надо методами теории групп — алгебры симметрий? Или это задача из динамики — и тогда к решению нужно привлекать ньютоновские дифференциальные уравнения?

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное