Читаем Величайшие математические задачи полностью

Составное число. Натуральное число, которое можно получить перемножением двух меньших натуральных чисел.

Стандартная модель. Квантовомеханическая модель, описывающая все известные элементарные частицы.

Степенной ряд. То же, что многочлен, но с бесконечным количеством степеней переменной. К примеру, 1 + 2x + 3x² + 4x³ +… В определенных обстоятельствах эта бесконечная сумма приобретает вполне определенное значение, и тогда говорят, что ряд сходится.

Степень. Число, умноженное само на себя заданное количество раз. К примеру, четвертая степень 3 — это 3 × 3 × 3 × 3 = 81, обозначается 34.

Степень многочлена. Наибольшая степень переменной в многочлене. К примеру, степень многочлена 6x³ − 5x² + 4x − 7 равна 3.

Сфера. Множество всех точек в пространстве, расположенных на заданном расстоянии от некой фиксированной точки — центра. Она круглая, как мяч, но собственно сфера содержит только точки на поверхности мяча, а не внутри него.

Тангенс. Тригонометрическая функция угла, определяемая как tg A = b/a (см. рис. 51).

Топологическое пространство. Форма, которая считается «той же самой», если подвергается любому непрерывному преобразованию.

Топология. Наука о топологических пространствах.

Тор. Поверхность, похожая на бублик с одним отверстием (см. рис. 12).

Трансцендентное число. Число, не удовлетворяющее ни одному алгебраическому уравнению с рациональными коэффициентами. Примеры: π и e.

Трехмерная сфера. Трехмерный аналог сферы: множество всех точек четырехмерного пространства, лежащих на заданном расстоянии от некоей фиксированной точки — центра.

Триангуляция. Разбивка поверхности на сеть треугольников или его многомерный аналог.

Тривиальная группа. Группа, состоящая из единственного элемента, причем единичного.

Трисекция. Деление на три равных части, особенно в отношении углов.

Упаковка. Организация форм в пространстве таким образом, чтобы они не накладывались друг на друга.

Устойчивое состояние. Состояние динамической системы, в которое она возвращается, будучи подвергнута небольшому возмущению.

Фаза. Комплексное число на единичной окружности, на которое домножается квантовая волновая функция.

Фундаментальная группа. Группа, образованная гомотопическими классами петель в некоем топологическом пространстве с операцией «последовательное прохождение петель».

Функция. Правило f, которое при действии на число x дает другое число f (x). К примеру, если f (x) = log x, то f — логарифмическая функция. Переменная x может быть действительной или комплексной (в этом случае ее часто обозначают z). В более общем случае x и f (x) могут быть элементами определенных множеств (в частности, плоскости или пространства).

Хаос. Случайное, на первый взгляд, поведение детерминированной системы.

Целое число. Любое из чисел … −3, −2, −1, 0, 1, 2, 3 …

Цикл. В топологии: формальная комбинация петель в триангуляции с присвоенными им числовыми индексами. В алгебраической геометрии: формальная комбинация подмногообразий с числовыми индексами.

Частица. Масса, сосредоточенная в одной точке.

Число Ферма. Число вида, где k — натуральное число. Если это число простое, оно называется простым числом Ферма.

Шар. Заполненная сфера, т. е. сфера и то, что находится у нее внутри.

Эйлерова характеристика.F — E + V, где F — число граней в триангуляции некоего пространства, E — число ребер, а V — число узлов. Для тора с g отверстиями эта величина равна 2 − 2g при любом разбиении на треугольники.

Электромагнитное поле. Функция, задающая силу и направление электрического и магнитного полей в каждой точке пространства.

Эллиптическая кривая. Кривая на плоскости, уравнение которой имеет вид y² = ax³ + bx² + cx + d; постоянные a, b, c, d обычно считаются рациональными (см. рис. 27).

Эллиптическая функция. Комплексная функция, значение которой не меняется при прибавлении к переменной двух независимых комплексных чисел. Иными словами, f (z) = f (z + u) = f (z + v), где v не равно u, домноженному на действительный коэффициент (см. рис. 30).

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное