Kondepudi D. K., Nelson G. W. Weak neutral currents and the origin of biomolecular chirality
. Nature, vol. 314, iss. 6010, pp. 438–441. 1985.Вернуться
436
Quack M. How Important is Parity Violation for Molecular and Biomolecular Chirality?
Angewandte Chemie, vol. 41, iss. 24, pp. 4618–4630. 2002.Вернуться
437
Kondepudi D. K. et al. Chiral Symmetry Breaking in Sodium Chlorate Crystallization
. Science, vol. 250, iss. 4983, pp. 975–976. 1990.Вернуться
438
Blackmond D. G. The Origin of Biological Homochirality
. Cold Spring Harbor Perspectives in Biology, vol. 2, iss. 5, a002147. 2010.Вернуться
439
Viedma C. Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling
. Physical Review Letters, vol. 94, iss. 6, art. 065504. 2005.Вернуться
440
Noorduin W. L. et al. Emergence of a Single Solid Chiral State from a Nearly Racemic Amino Acid Derivative
. Journal of the American Chemical Society, vol. 130, iss. 4, pp. 1158–1159. 2008.Вернуться
441
Viedma C. et al. Evolution of Solid Phase Homochirality for a Proteinogenic Amino Acid
. Journal of the American Chemical Society, vol. 130, iss. 46, pp. 15274–15275. 2008.Вернуться
442
Мы уже встречались с Моровицем – когда обсуждали гипотезу “вначале был компартмент” (глава 9) и говорили о возникновении метаболизма (глава 10).
Вернуться
443
Morowitz H. J. A mechanism for the amplification of fluctuations in racemic mixtures
. Journal of Theoretical Biology, vol. 25, iss. 3, pp. 491–494. 1969.Вернуться
444
Klussmann M. et al. Thermodynamic control of asymmetric amplification in amino acid catalysis
. Nature, vol. 441, iss. 7093, pp. 621–623. 2006.Klussmann M. et al. Rationalization and Prediction of Solution Enantiomeric Excess in Ternary Phase Systems
. Angewandte Chemie International Edition, vol. 45, iss. 47, pp. 7985–7989. 2006.Вернуться
445
Ball P. Giving life a hand
. Chemistry World, iss. 4, pp. 30–31. 2007.Вернуться
446
Tassinari F. et al. Enantioseparation by crystallisation using magnetic substrates
. Chemical Science, iss. 20, advance art. 2019.Вернуться
447
Cronin J. R., Pizzarello S. Enantiomeric Excesses in Meteoritic Amino Acids
. Science, vol. 275, iss. 5302, pp. 951–955. 1997.Вернуться
448
Glavin D. P., Dworkin J. P. Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies
. PNAS, vol. 106, iss. 14, pp. 5487–5492. 2009.Вернуться
449
McGuire B. A. et al. Discovery of the interstellar chiral molecule propylene oxide (CH
3CHCH2O). Science, vol. 352, iss. 6292, pp. 1449–1452. 2016.Вернуться
450
Blackmond D. G. The origin of biological homochirality
. Cold Spring Harbor Perspectives in Biology, vol. 11, iss. 3, a032540. 2019.Вернуться
451
Hein J. E. et al. A route to enantiopure RNA precursors from nearly racemic starting materials
. Nature Chemistry, vol. 3, iss. 9, pp. 704–706. 2011.Hein J. E., Blackmond D. G. On the Origin of Single Chirality of Amino Acids and Sugars in Biogenesis
. Accounts of Chemical Research, vol. 45, iss. 12, pp. 2045–2054. 2012.Wagner A. J. et al. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis
. ACS Central Science, vol. 3, iss. 4, pp. 322–328. 2017.Вернуться
452
Morigaki K. et al. Autopoietic Self-Reproduction of Chiral Fatty Acid Vesicles
. Journal of the American Chemical Society, vol. 119, iss. 2, pp. 292–301. 1997.Вернуться
453