Свою статью Уотсон и Крик заканчивают дерзким и подзадоривающим заявлением: “Мы не можем не отметить, что принятое нами за основу утверждение о специфичном образовании пар оснований напрямую указывает на возможный механизм копирования генетической информации”. Мысль, которая пришла им на ум и которую они не дали себе труда сформулировать, – это мысль о том, что ДНК способна разделяться на две отдельные цепочки. Далее каждая из них может захватывать проплывающие мимо нуклеотиды. Вновь образующиеся цепочки всегда будут иметь правильную последовательность из соответствующих друг другу пар нуклеотидов – иначе они просто не смогли бы встроиться в нее.
Описание структуры ДНК Уотсоном и Криком было опубликовано в апрельском номере журнала
Однако журналисты практически проигнорировали это открытие. И если опубликованное несколькими месяцами ранее исследование Миллера было буквально разнесено по различным СМИ, то работе Уотсона, Крика, Франклин и Уилкинса пресса уделила лишь малую толику внимания. Со временем, впрочем, оно все же получило должную оценку: Крик, Уотсон и Уилкинс разделили Нобелевскую премию 1962 года по физиологии и медицине[118]
. Франклин же, к сожалению, умерла от рака яичника четырьмя годами ранее, в возрасте тридцати семи лет.Если обратиться к историческому контексту открытия Уотсона и Крика, то станет понятно: эта идея, можно сказать, витала в воздухе. Оба ученые прислушались к рассуждениям физика Эрвина Шрёдингера[119]
, который в 1944 году в своей книге “Что такое жизнь?” (Итак, структура ДНК была установлена, и перед биохимиками возникла новая проблема. Им предстояло выяснить, для чего эта молекула нужна в клетке. Что за сообщение содержит в себе последовательность нуклеотидов? Ответ на это дал тот же Крик: это инструкция, необходимая для производства белков, – одних из самых распространенных и важных биологических молекул. Определяя то, какие именно белки нужно синтезировать, ДНК контролирует и внутреннюю жизнь клетки. Мы присмотримся к белкам повнимательнее в главе 7, а пока просто скажем, что белки представляют собой цепочки из аминокислот. Все живое построено из 22[123]
аминокислот, однако они объединяются в последовательности длиной в сотни отдельных аминокислотных остатков, примерно как буквы в слове “пневмоноультрамикроскопикосиликовулканокониоз”[124]. Каким-то образом эти четыре основания ДНК кодируют нужную последовательность из аминокислот.Возникла задача “взломать” этот генетический код[125]
. По сути, впрочем, это не одна, а две отдельные задачи: расшифровка находящегося в ДНК послания и выяснение механизмов, с помощью которых это послание используется для синтеза белков. Далеко не все из занятых этими проблемами ученых интересовались еще и зарождением жизни. Зато те, которые интересовались, настороженно следили за развитием событий. Они знали, что теперь им придется объяснять, как впервые возникла система из работающих вместе ДНК и белка.Каким образом ДНК кодирует последовательность аминокислот в белке? Это несколько напоминает перевод с одного языка на другой, причем каждый из языков пользуется собственным алфавитом. “Алфавит” ДНК состоит из азотистых оснований: ее цепочки как раз и состоят из связанных нуклеотидов. Существует всего четыре основания, которые можно считать своего рода “буквами” ДНК. A – это аденин, C – цитозин, T – тимин и G – гуанин. Однако в “алфавите” белков аминокислотных “букв” уже 22. Требовалось понять, как именно всего четыре буквы “алфавита” ДНК умудряются кодировать все 22 буквы “белкового алфавита”.