Самая простая модель предполагает, что каждое азотистое основание кодирует одну определенную аминокислоту. Но такой вариант совершенно неприемлем, поскольку в этом случае возможно закодировать информацию только о четырех аминокислотах из 22. Напротив, каждую аминокислоту можно представить как короткую последовательность из оснований. Однако какую длину она должна иметь? Пары оснований вроде AC или TG тоже не сгодятся, поскольку таких комбинаций всего 16 (4 умножить на 4), что опять-таки меньше числа аминокислот. Сочетаний из трех азотистых оснований существует уже 64, намного больше, чем требуется, но по-другому представить этот код оказалось невозможно. Идея, что ДНК использует трехбуквенные последовательности (так называемые триплеты), стала предметом долгих дискуссий, но в итоге оказалась правильной.
Одним из первых это понял советский физик Георгий Гамов, который больше известен как один из создателей теории Большого Взрыва – концепции начала Вселенной. В 1954 году Гамов выпустил небольшую статью, в которой изложил идею о том, что основания ДНК являются шифром[126]
. Он рассматривает белки как “длинные слова, «составленные из алфавита с 20 буквами»”, и задается вопросом о том, как “четырехзначные числа могут быть переведены в форму таких «слов»”.Позднее Гамов основал эксцентричное общество под названием “Клуб РНКовых галстуков”. Оно было поименовано в честь молекулы-ближайшего родственника ДНК и намеревалось расшифровать генетический код. Членами Клуба стали и Уотсон с Криком – наряду с двадцатью другими людьми, каждому из которых выделялась собственная личная аминокислота и вручался вязаный галстук с изображением молекулы РНК. Значительную часть своих заседаний это общество посвящало “мозговым штурмам”, далеко не всегда происходившим на трезвую голову.
К сожалению, представления Гамова о химических основах процесса оказались неверны. Считая, что белки собираются непосредственно на ДНК, он предположил, что аминокислоты с помощью механизма “ключа и замка” проникают в зазор между нуклеотидами. Однако уже тогда было понятно, что белки не собираются на самой ДНК. Первые данные о том,
19 сентября 1957 года Крик прочел лекцию в Университетском Колледже Лондона. В следующем году он издал ее под названием “О синтезе белка” (
Следуя примеру Гамова, Крик, в общем, не слишком интересовался по-прежнему неизвестной химией синтеза белка, рассматривая вместо этого поток информации как таковой. Он предположил, что информация хранится в ДНК и зашифрована в ее последовательности. Благодаря этому она каким-то образом может быть “переведена на другой язык”, язык аминокислот. Свою идею о переносе информации от ДНК к белку – но не обратно! – Крик назвал “центральной догмой”. Позже он сожалел об этом, потому что “догма” означает нечто, что невозможно подвергать сомнению. Крик признал, что не вполне понимал значение этого слова.
Вдобавок Крик предложил еще и верную последовательность событий при синтезе белка. Вначале некоторый ген копируется с ДНК в форму РНК, которая переносит информацию к рибосоме. Затем рибосома создает сам белок, используя эту РНК-инструкцию. Крик полагал, что аминокислоты собираются непосредственно на РНК-“матрице”. Но каким образом каждая из них узнает, где ей следует оказаться? В качестве решения ученый предположил, что есть особый тип РНК, названный им “адапторная РНК”. Каждая из аминокислот имеет соответствующую ей адапторную РНК, которая присоединяется к РНК-матрице за счет спаривания соответствующих нуклеотидов, почти как в ДНК. В результате аминокислоты образуют цепочку со строго заданной последовательностью.
Удивительно, насколько прозорливым оказался Крик. Примерно тогда же, когда он читал свою лекцию, ученые из Гарвардского университета выделяли ту самую адапторную РНК. Позднее ее стали называть также транспортной[130]
. Каждая транспортная РНК представляет собой только одну цепочку, имеющую форму листа клевера. В полном соответствии с предположением Крика оказалось, что различные транспортные РНК переносят разные аминокислоты.