Такое истолкование совершенно неприемлемо. Если математические предложения расходятся с опытом, никто не будет считать математические предложения опровергнутыми и исправлять их в соответствии с опытом. Математические теоремы мы считаем гораздо более несомненными, чем наши вычисления и измерения. Если эти последние не согласуются с теоремами, мы не считаем измерения точными, а вычисления — верными. Это доказывает, что математика не опирается на опыт и имеет самостоятельное значение. Логику столь же мало можно вывести из опыта, ибо она уже предполагается при всяком методически организованном опыте. Логика не может измениться благодаря новому опыту. Конечно, генетически логика и математика могут восходить к опыту, т. е. к связям чувственных переживаний, ибо опыт мог дать толчок к их возникновению. Однако уже давно они стали самостоятельными системами, значение которых совершенно не зависит от опыта. Можно сказать, что они имеют значение «а priopi», если под этим понимать не более чем «независимость от опыта».
Эти соображения до сих пор были решающим возражением против эмпиризма и делали его неприемлемым для всех, кто их разделял. Выход из дилеммы: отказ от эмпиризма или ошибочное истолкование логики и математики, был найден только Венским кружком48
: логика и математика ничего не говорят о чувственно воспринимаемом мире. Логика не дает никакого знания, она выражает не основные законы бытия, а основоположения упорядочения мыслей. Логические связи являются только мысленными, они представляют собой не фактические связи реальности, а лишь связи в системах изображения реальности. Например, классы существуют не как некие реальности, а как объединения в мысли. И отрицанию в окружающем мире не соответствует какого-то особенного положения дел наряду с позитивным положением. Поскольку логические связи являются чисто формальными, они могут устанавливаться совершенно независимо от конкретного смысла предложений, от конкретных положений дел. Поэтому они могут вообще ничего не говорить о бытии. Логика содержит аксиомы порядка в символическом представлении. В мышлении имеющим языковое выражение предметам и их связям сопоставлены символы и связи символов. Это сопоставление не является однозначным в том смысле, что каждому предмету или отношению соответствует только один символ и наоборот, оно одномногозначно, т. е. одному и тому же предмету соответствуют несколько символов или совокупностей символов, но не наоборот, поэтому возможны преобразования друг в друга таких наборов символов, которые обозначают один и тот же предмет или положение дел. Логика как раз и содержит правила таких преобразований. В качестве чистой логики она устанавливает законы лишь для символики, а не для чувственно воспринимаемого мира. Известная логическая аксиома «Что верно для всех, то верно и для каждого в отдельности» описывает одно и то же положение вещей с помощью двух разных символов, а именно «все» и «каждый в отдельности». Однако «у мира нет свойства, состоящего в том, что верное для всех верно также для каждого»49.В силу того что математика может быть выведена из логики, она обладает тем же характером. Математик также не говорит ни о каких фактах. С чисто математической точки зрения, числа — если отвлечься от их применения — не обозначают никаких предметов из мира опыта, а геометрия не описывает реального пространства. Существует несколько взаимоисключающих геометрий, и какая из них окажется справедливой в опытном мире, заранее сказать нельзя. Они разрабатываются независимо от того, окажутся они справедливыми или нет. Системы геометрии имеют дело не с эмпирическими объектами, а с идеальными конструктами, например с лишенными размеров точками и т.п. Равенство, например известный пример Канта «7+5=12», не относится к какому-то реальному положению дел, но лишь преобразует две группы единиц в одну группу согласно правилам вычисления. Ни сами эти единицы не являются реальными вещами, ни правила вычисления не являются законами природы. Числа представляют собой классы любых мыслимых предметов, а правила вычисления являются установленными нами правилами преобразования одних классов в другие50
. Причем эти другие классы состоят из тех же самых единиц. При этом мы всегда остаемся в рамках системы представления, внутри чисто умственного порядка51.В таком понимании априорная значимость логики и математики уже не создает никаких трудностей. Ее можно признать без всяких оговорок, ибо она связана не с опытом, а лишь с символическим представлением. Предложения логики и математики нельзя рассматривать как выражение знаний о реальности, они дают лишь способ преобразования символики, которой в реальности всегда соответствует одно и то же положение дел, по крайней мере, должно соответствовать. Их априорная значимость опирается на установки, относящиеся только к сфере символизма, поэтому они выражают закономерности не чувственно воспринимаемого, а только символического представления.