И что же в результате? А в результате вот что: если нейтрино встретится с обычной материей, оно пройдет сквозь нее и окажется по другую сторону. Удивительно, не правда ли? Разве такого вы ожидали? Представьте себе, что в один пистолет зарядили пулю, а в другой — зернышко арахиса и потом выстрелили из обоих стволов в бетонный блок. Наверняка вы рассчитываете, что более тяжелый объект, пуля, пройдет насквозь, а арахис — нет. А в мире элементарных частиц сквозь стенку проходит именно арахис! В чем же ключ к разгадке поведения нейтрино? В том, что так называемое «твердое» вещество, по сути, представляет собой пустоту (см. главу «А почему это мы должны проваливаться сквозь пол?»). Однако некоторые компоненты этих «пустых» атомов обладают электрическим зарядом, так что, если вы, допустим, выстрелите протоном, представляющим собой заряженную частицу, в скопление атомов, рано или поздно он сблизится с этими компонентами настолько, что их электрические заряды заставят протон отклониться от траектории, а то и вовсе захватят его. Нейтрино же не только фактически лишено массы, оно еще и обладает очень малым электрическим зарядом — возможно, в тысячу раз слабее, чем электромагнитные силы, которые влияют на более массивные и сильнее заряженные атомные частицы. Нейтрино хоть и «дефективно» в смысле массы и заряда, зато оно способно пройти сквозь слой свинца толщиной в световой год и вынырнуть с той стороны целым и невредимым.
Хотя нейтрино крайне редко вступают во взаимодействие с другими частицами, поверхности Земли постоянно достигают все новые нейтрино с Солнца. На каждый квадратный сантиметр освещенной Солнцем поверхности Земли каждую секунду прибывают 70 миллиардов нейтрино. Львиная их доля проходит сквозь толщу нашей планеты и оказывается с другой стороны, однако при определенных обстоятельствах нейтрино вступают во взаимодействие с веществом Земли, и в результате образуется электрон, движущийся быстрее скорости света.
Так, кажется, пора остановиться и сделать необходимые пояснения. Какое право имеет нечто — пусть даже столь крохотное, как электрон, — двигаться быстрее скорости света? Если вы хоть немного разбираетесь в физике, то знаете: двигаться быстрее скорости света вообще нельзя. Но это в вакууме. Скорость света в некоторых других средах, например в воде, значительно меньше скорости в вакууме (может быть, в два раза меньше максимального показателя), поэтому у частиц появляется возможность превысить эту замедленную скорость. Если они действительно ее превысят, будет видна вспышка голубого излучения, — если использовать аналогию со звуком, то примерно так же при прохождении телом звукового барьера слышится сверхзвуковой хлопок. Чтобы засечь нейтрино, ученые используют очень вместительный контейнер, наполненный некой плотной прозрачной субстанцией, например тяжелой водой или, в некоторых случаях, жидкостью для химической чистки одежды. Поскольку Земля в любой ее точке буквально купается в нейтрино, стоит ученым проявить немножко терпения и дождаться нужного сочетания условий, как они увидят вспышку голубого излучения — это выдал себя нейтрино, вступивший в контакт с прозрачной субстанцией.
Ну, а как там насчет высказанной выше идеи, будто нейтрино можно обнаружить невооруженным глазом? Что ж, это лишь вопрос вероятности. Человеческий глаз может заменить цистерну с прозрачной субстанцией и увидеть точно такую же голубую вспышку, для этого нужно только, чтобы один из 70 миллиардов нейтрино, проходящих сквозь глаз за секунду, запустил необходимый для этого эффекта механизм. Кстати, потоки нейтрино, бомбардирующие Землю, прибывают не только с Солнца, но и из более далеких мест, например, они долетают до нас от взрывающихся звезд, которые носят название сверхновых (см. главу «Мы — звездная пыль»). По приблизительным оценкам, после одного такого взрыва, зафиксированного в 1987 году, пережить «контакт» с нейтрино могли от одной до пяти тысяч человек, и, если местом «контакта» был глаз, небольшая часть этих людей могла увидеть голубую вспышку, сопутствующую прохождению нейтрино. Следовательно, всегда есть вероятность того, что потоки нейтрино, ежедневно обрушивающиеся на Землю, снова когда-нибудь где-нибудь у кого-нибудь вызовут сходную вспышку. Однако шансов увидеть это, заметить и потом сообщить человечеству у каждого из нас ничтожно мало — их куда меньше, чем шансов дожить до глубокой старости у некоего субъекта, посаженного на строгую диету из одних лишь нейтрино.
Каменный хронометр
«Возраст этой породы — четыре миллиарда четыреста миллионов лет, — объявил австралийский ученый профессор Саймон Уайлд вместе со своими коллегами-геологами в 2001 году. — С днем рождения!» (Вообще-то последнюю часть реплики я придумал.) Он говорил об одном из старейших сформировавшихся участков земного рельефа. Но как ученый узнал точный возраст?