Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Деревья решений тоже не застрахованы от проклятия размерности. Скажем, понятие, которое вы пытаетесь получить, представляет собой сферу: точки внутри нее положительные, а снаружи — отрицательные. Дерево решений может приблизить сферу самым маленьким кубом, в который она помещается. Это не идеально, но и не очень плохо: неправильно классифицированы будут только углы. Однако в большем числе измерений почти весь объем гиперкуба окажется вне гиперсферы, и на каждый пример, который вы правильно классифицируете как положительный, будет приходиться много отрицательных, которые вы сочтете положительными, а это резко снижает точность.

На самом деле такая проблема есть у всех обучающихся алгоритмов — это вторая беда машинного обучения после переобучения. Термин «проклятие размерности» был придуман в 50-е годы Ричардом Беллманом[93], специалистом по теории управления. Он заметил, что алгоритмы управления, которые хорошо работают в трех измерениях, становятся безнадежно неэффективными в пространствах с большим числом измерений, например, когда вы хотите контролировать каждый сустав манипулятора или каждую ручку на химическом комбинате. А в машинном обучении проблема не только в вычислительных затратах: с ростом размерности само обучение становится все сложнее и сложнее.

Тем не менее не все потеряно. Во-первых, можно избавиться от не имеющих отношения к делу измерений. Деревья решений делают это автоматически, путем вычисления информационного выигрыша от каждого атрибута и выбора самых информативных. В методе ближайшего соседа мы можем сделать нечто похожее, сначала отбросив все атрибуты, которые дают прирост информации ниже определенного порога, а затем измерив схожесть в пространстве с меньшим числом измерений. В некоторых случаях это быстрый и достаточно хороший прием, но, к сожалению, ко многим понятиям он неприменим. Среди них, например, исключающее ИЛИ: если атрибут говорит что-то о данном классе только в сочетании с другими атрибутами, он будет отброшен. Более затратный, но хитрый вариант — «обернуть» выбор атрибута вокруг самого обучающегося алгоритма с поиском путем восхождения на выпуклые поверхности, который будет удалять атрибуты, пока это не повредит точности метода ближайшего соседа на скрытых данных. Ньютон многократно выбирал атрибуты и определил, что для предсказания траектории тела важна только его масса, а не цвет, запах, возраст и миллиард других свойств. Вообще говоря, самое важное в уравнении — все те количества, которые в нем не появляются: когда известны самые существенные элементы, часто оказывается легче разобраться, как они зависят друг от друга.

Одно из решений проблемы неважных атрибутов — определение их веса. Вместо того чтобы считать сходство по всем измерениям равноценным, мы «сжимаем» наименее подходящие. Представьте, что обучающие примеры — это точки в комнате и высота для наших целей не требуется. Если ее отбросить, все примеры спроецируются на пол. Произвести понижающее взвешивание — все равно что опустить в комнате потолок. Высота точки все еще засчитывается при вычислении расстояния до других точек, но уже меньше, чем ее горизонтальное положение. И, как и многое другое в машинном обучении, вес атрибутов можно найти путем градиентного спуска.

Может случиться, что потолок в комнате высокий, а точки данных лежат рядом с полом, как тонкий слой пыли на ковре. В этом случае нам повезло: проблема выглядит трехмерной, но в сущности она ближе к двухмерной. Мы не будем сокращать высоту, потому что это уже сделала природа. Такое «благословение неравномерности» данных в (гипер)пространстве часто спасает положение. У примеров могут быть тысячи атрибутов, но в реальности все они «живут» в пространстве с намного меньшим числом измерений. Именно поэтому метод ближайшего соседа бывает хорош, например, для распознавания написанных вручную цифр: каждый пиксель — это измерение, поэтому измерений много, но лишь мизерная доля всех возможных изображений — цифры, и все они живут вместе в уютном уголке гиперпространства. Форма низкоразмерного пространства c данными бывает, однако, довольно своенравна. Например, если в комнате стоит мебель, пыль оседает не только на пол, но и на столы, стулья, покрывала и так далее. Если можно определить примерную форму слоя пыли, покрывающей комнату, тогда останется найти координаты каждой точки на нем. Как мы увидим в следующей главе, целая субдисциплина машинного обучения посвящена открытию форм этих слоев путем, так сказать, прощупывания гиперпространства во тьме. 

<p>Змеи на плоскости</p>
Перейти на страницу:

Похожие книги

Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука
Информатика: аппаратные средства персонального компьютера
Информатика: аппаратные средства персонального компьютера

Рассмотрены основы информатики и описаны современные аппаратные средства персонального компьютера. Сформулированы подходы к определению основных понятий в области информатики и раскрыто их содержание. Дана классификация современных аппаратных средств персонального компьютера и приведены их основные характеристики. Все основные положения иллюстрированы примерами, в которых при решении конкретных задач используются соответствующие программные средства.Рекомендуется для подготовки по дисциплине «Информатика». Для студентов, аспирантов, преподавателей вузов и всех интересующихся вопросами современных информационных технологий.

Владимир Николаевич Яшин

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Справочник по параметрам BIOS
Справочник по параметрам BIOS

В справочнике в алфавитном порядке приведено описание большинства параметров современных BIOS. В краткой форме описаны большинство настроек BIOS, даны рекомендуемые значения для различных конфигураций компьютеров. Также рассказано, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее.Кроме того, вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы.Для более глубокого понимания работы BIOS и детального рассмотрения ее функций рекомендуем обратиться к книге «Оптимизация BIOS. Полное руководство по всем параметрам BIOS и их настройкам» А. Вонга.Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Зарубежная компьютерная, околокомпьютерная литература