Не стоит упоминать, что постоянно таскать за собой множество гипотез вместо одной тяжело. При обучении байесовской сети приходится делать предсказания путем усреднения всех возможных сетей, включая все возможные структуры графов и все возможные параметры значений для каждой структуры. В некоторых случаях можно вычислить среднее по параметрам в замкнутой форме, но с варьирующимися структурами такого везения ждать не приходится. Остается, например, применить MCMC в пространстве сетей, перепрыгивая из одной возможной сети к другой по ходу цепи Маркова. Соедините эту сложность и вычислительные затраты с неоднозначностью байесовской идеи о том, что объективной реальности вообще не существует, и вы поймете, почему в науке последние 100 лет доминирует частотный подход.
У байесовского метода есть, однако, спасительное свойство и ряд серьезных плюсов. В большинстве случаев апостериорная вероятность практически всех гипотез чрезвычайно мала и их можно спокойно проигнорировать: даже рассмотрение одной, наиболее вероятной гипотезы обычно дает очень хорошее приближение. Представьте, что наше априорное распределение для проблемы броска монетки заключается в том, что все вероятности орлов одинаково правдоподобны. После появления результатов последовательных подбрасываний распределение будет все больше и больше концентрироваться на гипотезе, которая лучше всего согласуется с данными. Например, если
Апостериорная вероятность броска становится априорной для следующего броска, и, бросок за броском, мы все больше убеждаемся, что
Это может показаться чисто теоретической дискуссией, но на самом деле ее практические последствия огромны. Если мы видели, что монету подбросили только один раз и выпал орел, принцип наибольшего правдоподобия подскажет, что вероятность выпадения орла должна быть равна единице. Это будет крайне неточно, и мы окажемся совершенно неподготовлены, если монетка упадет решкой. После многократных подбрасываний оценка станет надежнее, но во многих проблемах подбрасываний никогда не будет достаточно, как бы ни был велик объем данных. Представьте, что в наших обучающих данных слово «суперархиэкстраультрамегаграндиозно» никогда не появляется в спаме, но однажды встречается в письме про Мэри Поппинс. Спам-фильтр, основанный на наивном байесовском алгоритме с оценкой вероятности наибольшего правдоподобия, решит, что такое письмо не может быть спамом, пусть даже все остальные слова вопиют: «Спам! Спам!» Напротив, сторонник байесовского подхода дал бы этому слову низкую, но не нулевую вероятность появления в спаме, и в таком случае другие слова бы его перевесили.
Проблема лишь усугубится, если попытаться узнать и структуру байесовской сети, и ее параметры. Мы можем сделать это путем восхождения по выпуклой поверхности, начиная с пустой сети (без стрелок) и добавляя стрелки, которые больше всего увеличивают вероятность, пока ни одна из них не будет приводить к улучшению. К сожалению, это быстро вызовет очень сильное переобучение, и получится сеть, приписывающая нулевую вероятность всем состояниям, которые не появляются в данных. Байесовцы могут сделать нечто гораздо более интересное: использовать априорное распределение, чтобы закодировать экспертное знание о проблеме. Это их ответ на вопрос Юма. Например, можно разработать исходную байесовскую сеть для медицинской диагностики, опросив врачей, какие заболевания, по их мнению, вызывают те или иные симптомы, и добавить соответствующие стрелки. Это «априорная сеть», и априорное распределение может штрафовать альтернативные сети по числу стрелок, которые они в нее добавляют или убирают. Тем не менее врачам свойственно ошибаться, и данным разрешено перевесить их мнение: если рост правдоподобия в результате добавления стрелки перевешивает штраф, она будет добавлена.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии