Способ истолкования статистической неоднозначности, использующий идею двух различных уровней - необходимости и случайности - имеет кроме того тот недостаток, что по существу не порывает с ориентацией, идущей от классической механики: закон должен быть «очищен» от случайности и содержать лишь необходимость.[31] Однако собственное содержание статистических законов вряд ли можно вписать в рамки такого истолкования, поскольку им свойственна принципиально вероятностная природа. Если же настаивать на том, что случайность, в конечном счете, должна быть элиминирована из содержания закона, тогда, как подчеркивал Ю.В.Сачков, возникают сомнения относительно полноценности вероятностных методов и статистических закономерностей.[32] Соответственно, при подобной трактовке возникают трудности доказательства объективного содержания статистических теорий и их самостоятельной значимости. Такой характер обоснования статистических законов и свойственной им неоднозначности трудно согласовать с широким внедрением вероятностно-статистических методов в естественнонаучные теории, если исходить из признания объективного содержания и значимости последних.
Я полагаю, что все это заставляет исходить из более широкого толкования необходимости и случайности, именно из учета их диалектической природы и, тем самым, из их взаимопроникновения и взаимопереходов.
Специфическое переплетение необходимости и случайности находит свое отражение в понятии «вероятность». В самом деле, описание массовых случайных явлений посредством аппарата теории вероятностей позволяет приписывать определенные значения вероятностей как отдельным элементам всего множества случайных событий, так и различным его подклассам. Значение же вероятности выступает как важнейшая характеристика случайной величины, входя составным компонентом в распределение этой величины. Следовательно, установление вероятности (даже и единичного явления) означает включение его некоторым образом в класс необходимых связей, но не на уровне его конкретных (скажем, физико-химических) свойств, а на уровне вероятностей.
Здесь надо иметь в виду, что элементы статистической совокупности, находят свое выражение в количественных отношениях. Статистическая же закономерность выявляет устойчивый, инвариантный аспект этих отношений. Своеобразие данного инварианта состоит в том, что его нельзя непосредственно приложить к элементам, т.е. он не дает какого-либо правила перехода от одного объекта статистической совокупности к другому.
Налицо, таким образом, обобщенный, интегральный характер статистической необходимости, в рамках которой случайность утрачивает специфическую черту изолированности и самостоятельности, но выступает как лабильный момент упорядоченной связи, обусловливания двух уровней - массовости и отдельных элементов. Иными словами, обращение к вероятностям позволяет отразить своеобразным способом некоторую абстрактно-общую природу элементов, и данное обстоятельство свидетельствует в пользу наличия в такой связи момента необходимости.
Вместе с тем, в силу самого определения вероятности, с данным понятием всегда связан момент случайности, иррегулярности, так что применимость вероятности к уровню массовости свидетельствует о соотносимости присущих ему характеристик со случайностью. Более того, даже значение вероятности, близкое к единице или равное единице, не выводит данный класс явлений за рамки влияния случайности, что и выражается, например, в широко известном физическом принципе флуктуации (используемом в статистической физике).
В этой связи уместно остановиться на утверждении, звучащем: строго говоря, всякая закономерность является статистической. Иная формулировка этой же мысли такова: всякая динамическая закономерность является статистической с вероятностью осуществления, близкой к единице. [33] Вероятностный смысл динамической закономерности, равно как и статистической, обосновывается тем самым введением представления о степени ее реализуемости. Последняя ограничивается со стороны неисчерпаемости вглубь любого материального образования, а также со стороны незамкнутости любой материальной системы от внешних воздействий. В свете этих ограничений представление о динамических законах приходится рассматривать как отвлечение от реальных моментов сложности, как чрезмерную идеализацию, упрощающую действительную картину поведения системы. Иными словами, сложность, свойственная любой связи или обусловливанию, при описании с помощью динамических закономерностей просто игнорируется (и элиминируется таким грубым образом).
Именно, и только, в плане стремления выразить некоторым образом универсальный характер неопределенности следует, по моему мнению, понимать приписывание динамическим закономерностям значение вероятности близкое единице.