Вместе с тем Фройденталь выдвигал тезис: если вести речь о различии между количествами и предположительностями, то надо принимать во внимание более глубокие основания. Отмечается, что измерение количеств есть не что иное, как выбор внутри конечного ряда возможных значений (т.е. является заданием качественной определенной области возможностей.[52]. С математической точки зрения этот факт выразим в понятии компактного пространства. Последнее получает свое определение, если для каждого положительного «ε» существует конечная система рядов (интервалов), каждый из которых меньше «ε» и которые все вместе охватывают все пространство. Согласно этому определению точкой такого пространства является количество.
Уточнение положения точки в этом пространстве (т.е. собственно количества) достижимо путем увеличения числа конечных интервалов внутри «ε». Ясно, что предположительность не является точкой компактного пространства, что и показывал Фройденталь. [53]
Переход к конечности в области предположительной осуществим, если более или менее искусственным образом сделать компактным пространство, лежащее в основе этого рода величин. Здесь автор справедливо напоминал, что процесс измерения функций и их интерполяции требовал допущения в отношении непрерывности функций. И затем доказывал, что установление (выбор) некоторой произвольной, но фиксируемой константы С, ограничивающей колебания некоторого множества функций
Итак, по справедливому замечанию Фройденталя, переход к конечности в данной сфере состоит в установлении мостов между предположительностями и количествами и опирается на уже известные допущения и идеализации. Однако предположительности составляют особый класс и последовательно не могут считаться собственно количествами. Следовательно, имея дело с предположительностями как с количествами, нельзя забывать, что количества здесь выступают лишь в роли допущений, позволяющих формализовать процесс оперирования предположительностями. Если обратиться к вероятности, то это должно означать, что сопоставление ей метрических значений, в том числе 0 и 1, само по себе не может еще свидетельствовать о выходе вероятности за пределы области предположительностей. В то же время это свидетельствует в пользу соотнесенности вероятности даже в крайних своих значениях 0 и 1 со сферой возможного.
В силу сказанного представляется оправданным утверждение, что метрическое значение вероятности, равное 0, не говорит о превращении возможности в невозможность. Точно также значение вероятности, равное 1, не характеризует переход возможности в необходимость. Противоположное же утверждение, которое принималось рядом авторов (С.Т. Мелюхин, Л.В.Смирнов и др.), упускает из виду то обстоятельство, что сужение сферы абстрактно-возможного до необходимого, осуществимо лишь при учете всего реального многообразия условий. Формальный же способ перехода к необходимости исходит из чрезвычайно сильных идеализаций и допущений на этот счет. Использовать формальный признак в качестве ориентира реализации этого перехода было бы допустимо, если бы совокупность условий действительно можно было формализовать полностью. Однако такое допущение не является выполнимым. Соответственно, упомянутые утверждения не могут считаться достаточно строгими.
Подобная трактовка возможностной природы вероятности позволяет пролить некоторый свет на известный в науке парадокс, называемый «чудом Джинса» и определяемый в качестве вероятного, но невозможного физического явления (с позиций ряда свойств и особенностей известной нам части вселенной). В плане разбираемых здесь проблем этот парадокс замечателен, прежде всего, как утверждение, исключающее в некоторой области возможностное содержание вероятности.
Свою конкретную формулировку «чудо Джинса» получает в рамках статистической физики в виде мыслимого эксперимента с «чудесным» результатом. Скажем, с точки зрения статистической физики вероятным является замерзание воды в сосуде, когда последний поставлен в раскаленную печь. Вместе с тем вероятность этого результата столь мала, соответственно событие является столь редким, что его реализация в макроскопическом виде требует невообразимого масштаба времени, несовместимого с временными масштабами протекания большинства известных макрофизических процессов. Следствием этого и является тезис о невозможности.