Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Петли, наушники, законы подлости, неприятности… при чем же тут математика? Почему вообще имеет смысл рассуждать о законах подлости не так, как Артур Блох, когда он просто посмеялся и нашел меткий афоризм?

С математикой знакомы все, но мало кто готов ответить на вопрос: что делают математики? Считают и вычисляют? Рисуют треугольники и круги на бумаге в клеточку? Передвигают туда-сюда буквы в уравнениях? Придумывают странные значки и закорючки, чтобы потом писать непонятные тексты? Решают задачи, вычисляя что-то по заказу инженеров, медиков, химиков и других практиков?

Если вы никогда этого не делали, загляните в какой-нибудь математический журнал — просто из любопытства. Сейчас это легко сделать не выходя из дома: поищите в Сети что-то на тему «гомологическая теория типов» или «топология». Вы поразитесь тому, насколько то, что вы там обнаружите, не похоже на школьный образ математики. Но вот что важно: эта колоссальная разница не говорит о том, что есть одна, «простая» математика и другая, «сложная». Математику часто называют языком. Как на любом живом человеческом языке можно писать анекдоты и незамысловатые детские стишки или неуловимо тонкую поэзию, тяжеловесный роман или многостраничный договор, так и с помощью математики можно рассуждать о числах и отрезках, а можно — о петлях и поверхностях, многомерных пространствах и даже основах самой этой науки. Не нужно думать, что числа и отрезки — самое простое, с чем работают математики! Современные теория чисел и геометрия — огромные и во многом неизведанные области, в которых ведутся очень интенсивные исследования.

Но что же все-таки изучают математики? Для чего им этот язык? Чаще всего речь идет о тех или иных моделях. Например, что может быть моделью количества? Число, скажете вы. Но любое ли число годится для этого? Младшие школьники, впервые сталкиваясь с отрицательными числами, испытывают замешательство, ведь модель числа оказывается шире привычного им понятия количества. Переход от количества к шагам помогает понять, что числа годятся для моделирования движений на прямой. Тогда отрицательные числа обретают наконец смысл. А чем можно моделировать скорость? Тоже числом. Но если я скажу вам, что двигаюсь со скоростью 60, будет ли этого достаточно для описания того, что со мной происходит? Точно нет! Остается неясно ни куда я двигаюсь, ни, собственно, с какой скоростью: 60 может означать как 60 км/ч, так и 60 мм/год. Отсюда можно заключить, что для моделирования скорости только числа недостаточно. А если, желая объяснить вам, как я перемещаюсь, я изображу стрелку, станет ли понятнее? Стрелка — ориентированный отрезок — в качестве модели скорости лучше. Она показывает направление, а сравнив ее с какой-то эталонной стрелкой, принятой за единицу, можно определить ее масштаб. Более того, стрелки можно складывать и умножать на числа, получая новые корректные стрелки! И, главное, если мне удастся придумать, как однозначно сопоставлять скорости предметов стрелкам на бумаге, причем окажется, что если v1 соответствует стрелка a, а скорости v2 — стрелка b, сумме скоростей 3v1 + v2 будет соответствовать стрелка 3a + b и никакая иная, — то это уже будет свойством, позволяющим мне не бегать по двору, изучая скорости, а, сидя в кресле, рисовать стрелки на бумаге.

А можно ли чем-то моделировать стрелки? Абстрактной моделью в этом случае способен стать упорядоченный набор чисел с определенными правилами сложения и умножения на число, который называется вектором. Так математики пришли к мысли о линейных векторных пространствах, элементами которых являются векторы. Изучая свойства этих пространств (изучая, а не придумывая, разницу мы обсудим позже), математики выработали единый язык, который называется линейной алгеброй, для разговора о таких разных вещах, как, например, цвета, вращения предметов в пространстве, спектры звуковых сигналов. Пользуясь этим языком, уже можно найти оптимальную стратегию в экономической игре или научить компьютер распознавать нашу речь, рукописные буквы либо лицо человека в толпе.

Математики работают с математическими структурами — универсальными моделями всего, с чем имеет дело человеческий разум. Группы, поля, решетки, графы, петли, косы, языки и бесконечномерные пространства… Все это структуры с четко определенными свойствами и, если угодно, поведением. Вот уже тысячи лет математики исследуют взаимосвязи между ними, обнаруживают в реальном и математическом мире, что еще можно с их помощью моделировать и при каких условиях.

Я не случайно называл манипуляции с петлями на проводе наушников «сложением», а сами петли «положительными» и «отрицательными». Такая терминология оправдана тем, что петли на струне образуют структуру, называемую группой. Для ее построения нужно иметь множество[4] A и некую операцию +, которая будет удовлетворять следующим четырем свойствам.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги