1.
2.
3.
4.
Группа — общая модель для обратимого ассоциативного комбинирования действий или объектов. Ее образуют числа с операцией сложения, и они же формируют группу с операцией умножения. Несложно убедиться, что аксиомам группы удовлетворяют и петли на веревке или ленте. Понятие группы настолько важно в математике, что, хотя они сами нам в этой книге и не понадобятся, нелишним будет о них рассказать тем, кто с таким подходом еще не знаком, или напомнить тем, кто о группах уже слышал, но не связал свою жизнь с их изучением.
Мы в основном будем иметь дело с двумя структурами:
А начнем мы с простого инструментария, который будет полезен на протяжении всего рассказа. И для этого нам потребуется… велосипед!
Закон велосипедиста
Я большой энтузиаст любительского велосипедного спорта. Многие задачи, вошедшие в эту книгу, я обмозговывал в седле, вертя их мысленно и так и эдак, пытаясь найти наиболее наглядный и простой подход к их объяснению. Что может быть лучше, чем мчаться по трассе ранним утром, по холодку, скатываясь с легкого склона… Это ощущение стоит того, чтобы ради него преодолевать бесконечные подъемы или сопротивление встречному ветру! Правда, порой кажется, что подъемов больше, чем спусков, а ветер норовит быть встречным, куда ни поверни. В книгах по мерфологии в связи с этим приводится закон велосипедиста
:Живу я на Камчатке. В Петропавловске много горок — катаясь по городу, их не миновать. Однако меня должна успокаивать такая мысль: начиная свой путь из дома, я возвращаюсь снова туда, а это значит, что суммарный спуск должен быть равен суммарному подъему. Особенно честным будет маршрут, в котором прямой и обратный пути совпадают.
Представим себе 2-километровую трассу, которая состоит из одной симметричной горки: километр вверх, километр вниз. Вверх по склону я могу достаточно долго ехать со скоростью 10 км/ч, а на спуске стараюсь держать скорость 40 км/ч (я осторожный велосипедист). Исходя из этих условий, на подъем я буду тратить в четыре раза больше времени, чем на спуск, и общая картина получится такой: 4/5 времени путешествия уйдет на тягучий подъем и лишь 1/5 — на приятный спуск. Обидно — 80 % времени прогулки займет сложный участок пути! Этот результат не зависит от длины горок, а определяется лишь соотношением скоростей. Если я выкачусь из нашего холмистого города в сторону океана или в долину реки Авачи, горок почти не будет, но в моем распоряжении остаются встречный и попутный ветер или участки с плохой дорогой, которые также способны отнять значительную часть времени путешествия.
Взглянем на закон велосипедиста несколько иначе. Если я сделаю множество селфи на протяжении своей велопрогулки в случайные моменты, а потом займусь их подсчетом и классификацией, то обнаружу, что большинство картинок показывает мне согбенную фигуру в оранжевом шлеме, упорно ползущую вверх по склону либо сопротивляющуюся встречному ветру. Доля снимков с летящим и сияющим велосипедистом, как на рекламной картинке, увы, составит лишь около 20 %. А что скажет статистика? Если мы выпустим на холмистую трассу большую толпу велосипедистов, подождем немного и понаблюдаем за их плотностью, то увидим, что б
Измеряем уровень подлости
Давайте, как когда-то в школе, покажем на графике зависимость перемещения велосипедиста от времени при движении по симметричной треугольной горке. Только сделаем всё «по-взрослому», в так называемых
Рис. 1.3.
Диаграмма перемещения велосипедиста в долях от общего пути и времени