Читаем Вероятностный мир полностью

Запреты теории, когда она истинна, — принципиальные запреты: никакими лабораторными уловками их не обойти. Как, скажем, не обойти закона сохранения энергии: сколько ни мудри, а вечного двигателя не построишь. Так и здесь: как ни старайся, а точных начальных условий для квантового скачка не определишь. Законы природы неотменимы. Их можно до поры до времени не знать, но их нельзя ослушаться.

Весь вопрос в том, открылся ли тут действительно закон или выявился лишь результат хорошего рассуждения?

Если закон, то, стало быть, не особенности квантовой теории мешают узнавать одновременно координату и скорость электрона, а сама природа не ведает этого. Она в своих глубинах обходится без однозначной причинности. Она и вправду — вероятностный мир.

Хотя сомнений в добропорядочности механики микромира у Бора и не было, хорошее рассуждение еще не могло служить строго выведенным законом. Но в снегах Норвегии Бор ничего не писал — ни научных писем, ни статей. Он не делал математических выкладок. И черной доски у него не было под рукой. Он только думал. И предчувствовал, и сознавал: такой закон есть!

…А Гейзенберг тем временем в Копенгагене довел до конца свои независимые выкладки. Он нашел предел, до которого природа разрешает сводить на нет неопределенность в координате и неопределенность в скорости электрона.

Да, в поведении микрочастицы есть обилие возможностей. И это обилие не может исчезать — сводиться к нулю, к однозначной точности. Предел совместному уменьшению неопределенностей ставило существование все того же минимального кванта действия h! Планковский «таинственный посол из реального мира» и здесь давал о себе знать.

Было утро во второй половине февраля 27–го года, когда на листе бумаги замаячила выведенная рукою до крайности возбужденного Гейзенберга коротенькая формула для связи двух «дельт» — двух неопределенностей:

AB >= h ( или x p >= h )

(Она читалась так: произведение неопределенностей в координате и в скорости — или в импульсе — частицы может быть больше кванта действия или равно кванту действия, но никогда не становится меньше него.)

В этой формуле сразу бросалась в глаза удивляющая закономерность: когда уменьшается неопределенность в координате, растет неопределенность в скорости и, наоборот, чем определенней делается скорость, тем менее определенной становится координата электрона.

Теперь математически понятной стала ненаблюдаемость орбит в планетарном атоме. По отдельности они могут быть достаточно хорошо наблюдаемы — координата и скорость электрона–планеты, но стоит только попытаться точно замерить одну из этих величин, как в тот же момент делается совершенно неопределимой вторая.

Коротенькая формула сообщала и о другом. Оттого что неопределенности выступают парами, они накладывают друг на друга узду. Разумеется, там, где есть место для множества вариантов поведения, там повелевает случай. Но закономерная связь между неопределенностями усмиряет господство случая своей мягкой властью. Случай в микромире — не произвол.

…Как и в мае 25–го года после Гельголанда, Гейзенберг решился изложить свою находку прежде всего старому приятелю Вольфгангу Паули. («Старому!» — обоим еще было не близко до тридцати!) Таких длинных писем первый, кажется, покуда не писал, а второй — не получал: 14 страниц научного текста — почти готовая статья.

Ответ из Гамбурга пришел еще до возвращения Бора из Норвегии. С необычной для него восторженностью, без иронии и яда, Паули назвал происшедшее на копенгагенской мансарде событие «утренней зарей». И восклицал: «Да будет отныне день в квантовой механике!»

Формула Гейзенберга получила скромное название —· соотношение неопределенностей.

А позже, оценив ее основополагающее значение, физики стали часто говорить о принципе неопределенности. И вместе с ними — философы, потому что коротенькая формула легко и с полным правом совершила прыжок из владений квантовой физики в область философии природы.

Это и был тот искомый фундаментальный закон, до которого в те же дни, ведя свой давний спор с классической причинностью, почти добрался в норвежском одиночестве Нильс Бор.

Надо ли растолковывать, что он перечувствовал, когда по возвращении в институт увидел гейзенберговскую формулу?! Она явилась для него зрелищем и прекрасным, и драматическим. Его былой ассистент шведский теоретик Оскар Клейн рассказал историкам:

— …Бор отнесся с истинным восхищением к этой замечательной формуле. А в то же время ему стало как–то не по себе, быть может, потому, что все это роилось в его собственной голове, да не успело оформиться до конца.

Но разве не «удивительнейшим образом удивительно», что они — Бор и Гейзенберг — нашли порознь и несхожими путями то, до чего не могли доискаться вместе? Психологически совсем не удивительно…

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже