«Оба представления о свете встречаются с равными трудностями. Поэтому я склоняюсь к мнению, что свет может порождаться обоими родами движения, как телесным истечением, так и непрерывными импульсами. Может быть, лучше приписывать некоторые действия одному, а иные другому».
Кажется, учитель был дальновиднее своего великого ученика? Но нет, С. И. Вавилов нашел и у Ньютона такие строки:
«…Если мы предположим, что световые лучи состоят из маленьких частиц, выбрасываемых по всем направлениям светящимся телом, то эти частицы… должны возбуждать в эфире колебания столь же неизбежно, как камень, брошенный в воду…»
Видно, что Ломоносов напрасно повторил общепринятое тогда суждение о Невтоне, как ревнителе корпускулярной и противнике волновой теории света. Ньютон даже предложил конструктивный способ примирения несовместимых образов частицы и волны! Может быть, этот способ был бы и хорош, если бы в нем материя частиц не отделялась от материи волн. А то получалось, что выбрасывается светящимся телом нечто одно, колеблется же в пространстве нечто другое. И все–таки неизъяснимо приятно думать, что тут состоялась перекличка великих через века: из всех гениев классики, вероятно, Ньютон с наименьшим протестом и с наибольшим сочувствием встретил бы Эйнштейнову идею волн–частиц… (Пока, подобно Эйнштейну, не обнаружил бы вдруг, к каким непоправимым бедам для классической физики эта идея ведет.)
Точности ради надо сказать: когда в 1905 году Эйнштейн вновь открыл зачеркнутые XIX веком световые корпускулы, термин «волна–частица» у него еще не появился. Но появился этот странный образ: всякий квант содержал волновой признак — частоту колебаний и признак частицы — ограниченность в пространстве.
Этот двойственный образ воображение не осваивало. Логика — тоже. Проходило время, а положение не становилось легче:
«Итак, теперь мы имеем две теории света, обе необходимые и — как приходится признать сегодня — существующие без всякой логической взаимосвязи, несмотря на двадцать лет колоссальных усилий физиков–теоретиков».
Эйнштейн сказал это в 1924 году. И словно отвечая на немой вопрос читателя: «Так не следовало ли за два десятилетия придумать что–нибудь более удобоваримое?» — он добавил:
«Квантовая теория света сделала возможной теорию атома Бора и объяснила так много фактов, что она должна содержать значительную долю истины»
Уж кому–кому, а Бору эти слова должны были бы прийтись по душе! А между тем в том же 24–м году он не без сердитой досадливости сказал молоденькому Вернеру Гейзенбергу:
— Даже если бы Эйнштейн послал мне телеграмму с сообщением, что отныне он владеет окончательным доказательством реальности световых частиц, даже тогда эта телеграмма, переданная по радио, сумела бы добраться до меня только с помощью электромагнитных волн, из каковых состоит излучение!
Полемически это было придумано блестяще. Но двойственность квантов излучения не делалась от этого выдумкой Эйнштейна. Будто тонкий психологический роман пишет свою историю познание природы. Бор не заметил, что его остроумный выпад только подчеркнул неизбежность такой немилой его сердцу двойственности излучения: он ведь допустил, что возможно окончательное доказательство реальности квантов как частиц без утраты их реальности как волн!
Он хорошо поступил, подчеркнув это неосознанно: тогда в его исканиях уже совсем близок был день совершенно осознанного признания правоты Эйнштейна. Не подозревая об этом, он, как герой в романе, психологически заранее подготовил себя к такому поступку. А для физики это имело чрезвычайные последствия…
День признания наступил в июле следующего — 1925–го — года. Серия опытов немецких экспериментаторов заставила Бора оставить надежду на избавление от двойственности квантов. И это, наконец, убедило его, что не Эйнштейн, а природа навязывает нам образ волн–частиц. В тот же час просветленного понимания Бор пророчески написал: