Читаем Веселые задачи. Две сотни головоломок полностью

Рис. 186. Обрывки цепи.

176. Вишня

Мякоть вишни окружает ее косточку слоем толщиной в косточку. Будем считать, что и вишня, и косточка имеют форму шариков. Сообразите в уме, во сколько раз объем сочной части вишни больше объема косточки?

177. Дыни

Продаются две дыни. Одна – окружность 72 см – стоит 40 рублей. Другая – окружность 60 см – стоит 25 рублей.

Какую дыню выгоднее купить?

178. Удивительная затычка

В доске выпилены три отверстия: одно – квадратное, другое – круглое, третье – в форме креста (рис. 187). Нужно изготовить затычку такой формы, чтобы она годилась для всех этих отверстий.

Рис. 187. Какой затычкой можно заткнуть все эти дыры?

Вам кажется, что такой затычки быть не может: отверстия чересчур разнообразны по форме. Могу вас уверить, что подобная затычка существует. Попытайтесь найти ее.

179. Модель башни Эйфеля

Башня Эйфеля в Париже, высотой 300 м, из железа, которого пошло на нее 8 000 000 кг. У моего знакомого есть точная модель знаменитой башни, весящая всего только один килограмм.

Рис. 188.

Какой она высоты? Выше стакана или ниже?

181. Муха на ленте

Я взял длинную бумажную ленту, с одной стороны красную, с другой – белую, склеил ее концы и получившееся бумажное кольцо положил на стол.

Мое внимание привлекла муха, севшая на красную сторону ленты и начавшая странствовать по ней. Я стал следить за ее путешествием вдоль ленты и, к изумлению, заметил, что, побродив немного по ленте, она очутилась на противоположной, белой стороне, хотя все время оставалась на ленте и ни разу не переползла через ее край. Продолжая следить за мухой, я вскоре увидел, что она снова оказалась на красной стороне ленты, хотя – могу это утверждать – не покидала ленты, не переступала и не перелетала через ее края.

Не объясните ли вы, как могло это случиться?

Решения задач 171—180

171. Даже если бы Земля была совершенно плоской, линия горизонта была бы окружностью!

Действительно, что такое горизонт? Воображаемая линия, по которой небесный свод пересекается с Землей. Но небесный свод имеет форму шаровой поверхности. По какой же другой линии шаровая поверхность может пересекаться с плоскостью, как не по окружности.

Итак, круглая форма горизонта сама по себе еще не доказывает, что Земля кругла!

172. Мы знаем из условия задачи, что длина ног Эзопа равна 7 дюймам (голова) плюс длина половины туловища. Известно еще, что длина туловища равна длине ног плюс 7 дюймов, откуда длина ног равна длине туловища без 7 дюймов. Значит,

1/2 длины туловища + 7 дюймов = длина туловища – 7 дюймов.

Таким образом, туловище длиннее 1/2 туловища на 14 дюймов, откуда 1 /2 туловища равна 14 дюймам, а все туловище – 28 дюймам. Прибавив длину головы и ног, т. е. туловища, равного 28 дюймам, получим рост Эзопа: 56 дюймов, или 2 аршина.

Перейти на страницу:

Похожие книги