Читаем Вид с высоты полностью

Однако, когда водород преобразуется в гелий, 4 протона водорода, расположенные сначала на сравнительно большом расстоянии, превращаются в двухпротонное-двухнейтронное гелиевое ядро. Плотность в центре звезды повышается, и, по мере того как образуется все больше и больше гелия, увеличивается также концентрация массы, а следовательно, и сила поля тяготения. Чтобы противодействовать этому и восстановить равновесие, температура в центре звезды должна повыситься.

В конце концов температура поднимается так высоко, что «воспламеняются» ядра атомов гелия; они вступают в реакции синтеза и образуют еще более сложные ядра. Пока продолжается этот процесс, температура все растет, и постепенно образуются все более сложные атомы. В конце концов получаются атомы железа.

Самыми сложными атомами, которые могут образоваться в результате обыкновенных звездных реакций, являются именно атомы железа. Никакое дальнейшее усложнение ядер не станет источником энергии. Атомы более сложные, чем атомы железа, сами становятся «потребителями» энергии. Поэтому для обычных процессов в звездах появление железа — это уже тупик.

Такая звезда напоминает луковицу, так как ее слои имеют различный химический состав. В самом центре звезды находится железное ядро, окруженное слоем кремния, затем следуют слои магния, углерода, гелия и, наконец, слой водорода, который образует поверхность звезды.

В каждом слое непрерывно идут реакции слияния ядер, в результате которых образуются более тяжелые ядра, опускающиеся в очередной нижний слой; в конечном счете больше всех от этого выигрывает железное ядро, а проигрывает наружная водородная оболочка. Поле тяготения продолжает увеличиваться, но теперь в центре нет дополнительного источника энергии, который бы поддерживал равновесие.

Поскольку центр продолжает разогреваться, то после какого-то критического предела звезда вдруг сжимается. При этом внезапно увеличивается давление в верхних слоях, где еще имеется ядерное горючее, необходимое для реакций синтеза; эти реакции ускоряются, и выделяется колоссальное количество энергии, что кончается взрывом, «вдребезги» разносящим звезду.

В результате взрыва возникает гигантская сверхновая звезда, энергия которой создает условия для синтеза (слияния) даже атомов железа и образования еще более сложных атомов… вплоть до урана и, весьма возможно, калифорния. Взрыв рассеивает эти тяжелые элементы в космосе, и образуются новые звезды и звездные системы (вроде нашей), которые сначала включают небольшие количества материи.

Означает ли это, что каждая звезда на какой-то поздней стадии своего существования обречена на то, чтобы стать сверхновой? По-видимому, нет.

Чем массивнее звезда, тем сильнее ее поле тяготения и, следовательно, выше внутренняя температура и больше светимость на данной стадии цикла ядерных реакций. (Это и есть «зависимость масса — светимость», открытая в 1924 году английским астрономом Артуром С. Эддингтоном. Он первым подсчитал чудовищную температуру звездных недр.) По-видимому, для того чтобы наступила стадия, когда происходит взрыв и образование сверхновой звезды, ее масса с самого начала должна по крайней мере в 1,5 раза превышать массу нашего Солнца. Это «предел Чандрасекара», названный так в честь астронома, который первым его вычислил. Итак, что бы ни случилось с нашим Солнцем, сверхновой звездой оно никогда не станет. Оно даже не сможет разогреться как следует.


* * *


Но какой именно ядерный процесс ведет к этому катастрофическому сжатию и взрыву? И, в частности, какова температура в центре звезды, которая вот-вот должна стать сверхновой? По-видимому, это и будет самая высокая температура во Вселенной, а ее-то доктор Чу и хотел узнать.

Оказывается, звезды теряют энергию двумя способами. Они испускают и электромагнитное излучение, и нейтрино, которые ведут себя по-разному. Электромагнитное излучение так сильно взаимодействует с материей, что гамма-лучи, образовавшиеся в центре Солнца, то и дело сталкиваются с протонами, нейтронами и альфа-частицами, поглощаются, снова испускаются и так далее. Это длительный и сложный процесс, поскольку излучение должно пробиться из самых недр Солнца к его поверхности.

Лучшее подтверждение — тот факт, что поверхность Солнца, оказывается, нагрета до каких-то 6000 градусов. По земным представлениям она горячая. Однако не следует забывать, что поверхность Солнца находится всего в 700 тысячах километров от скопления вещества, температура которого равна 20 миллионам градусов. Если бы между солнечным ядром и точкой, удаленной от него на 700 тысяч километров, не было ничего, то любое вещество в этой точке приобрело бы температуру порядка миллионов градусов. Сам факт, что вещество в этой точке имеет температуру всего 6000 градусов, показывает, каким великолепным теплоизолятором является вещество Солнца и как трудно излучению пробиться сквозь это вещество и уйти в пространство.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука