Читаем Вид с высоты полностью

С другой стороны, элемент, уступивший 1–2 электрона, пожертвовал самыми далекими от ядра и наименее прочно удерживаемыми электронами. Оставшиеся электроны теснятся сравнительно близко к ядру, и радиус такого катиона (атома, потерявшего несколько электронов) меньше радиуса атома в его первоначальном виде.

В результате анион кислорода имеет радиус 1,40 ангстрема (один ангстрем равен одной стомиллионной сантиметра), катион кремния — 0,42 ангстрема и катион железа — 0,74 ангстрема; в то же время катионы и кремния, и железа значительно тяжелее сравнительно легкого аниона кислорода.

Объем любого шара пропорционален кубу его радиуса, и поэтому различие в радиусах ионов сказывается на их объемах. Например, объем аниона кислорода равен примерно 11,5 кубического ангстрема, объем катиона железа — только 2,1 кубического ангстрема, а объем катиона кремния — только 0,4 кубического ангстрема.

И вот оказывается, что, имея такое большое число атомов и большой объем отдельных анионов, кислород захватил 93,77 % всего объема земной коры. Твердая земля, по которой мы ходим, — это не что иное, как хорошо уложенный набор тесно прижавшихся друг к другу анионов кислорода, а в щелочках, образовавшихся между ними, там и сям втиснуты маленькие катионы других 7 элементов. Гибралтарская скала — это всего лишь груда кислорода с небольшими добавками.

Разумеется, все эти сведения касаются только тех частей литосферы, которые мы можем поскрести, размельчить и подвергнуть исследованиям. А как же быть с теми частями, до которых мы не можем добраться? В поисках золота человечество раскопало земную кору на глубину 5 километров; разыскивая нефть, оно углубилось еще на несколько километров, но все это для Земли не больше чем булавочные уколы. Наши знания о Земле пока ограничиваются ее поверхностью, и возможно, так будет еще долго.

Лентяй решил бы эту проблему просто. Он предположил бы, что поверхность земной коры точно представляет то, что скрывается в недрах Земли, и вся планета от самых глубин и до верхних слоев такая же, как и ее поверхность.

Однако тех, кто ищет простые ответы, ждет разочарование. Даже на поверхности нашей планеты картина не такова. Если бы вся Земля была так богата ураном и торием, как земная кора, то от теплоты, выделяемой при радиоактивном распаде, наша планета расплавилась бы. Земля тверда, и уже одно это показывает, что запасы урана и тория на небольшом расстоянии от «кожи» Земли иссякают, то есть хотя бы в этом состав земных недр с глубиной меняется.

Кроме того, в массивах материков преобладает гранит, а дно океанов, по-видимому, состоит из базальта. Гранит богаче алюминием и беднее магнием, чем базальт, и поэтому некоторые геологи считают, что земная кора состоит из сравнительно легких континентальных массивов, богатых кремнекислым алюминием (силикатом алюминия, сокращенно сиаль) и плавающих на сравнительно тяжелом основании, в свою очередь богатом кремнекислым магнием (силикатом магния, сокращенно сима), а земной запас воды заполняет промежутки между массивами сиаля.

Может быть, я нарисовал слишком упрощенную картину, но все же она дает представление о том, что состав Земли с глубиной изменяется. До сих пор дело касалось только металлов. В том, что я изложил выше, нет ничего умаляющего достоинства кремния и кислорода с точки зрения их господства. Что бы там ни изменялось в частностях, Земля, в сущности, остается силикатным шаром, или, другими словами, огромным каменным глобусом.

Первые точные сведения о недрах Земли были получены только в 1798 году, когда Генри Кавендиш впервые определил массу земного шара. Объем Земли был известен еще во времена древних греков. Разделив массу, определенную Кавендишем, на объем, мы получим среднюю плотность Земли, которая равна 5,52 грамма на кубический сантиметр. Но ведь плотность земной коры равна примерно 2,8 грамма на кубический сантиметр, а это значит, что с глубиной плотность повышается. И в самом деле, плотность ее глубинных недр должна быть куда больше, чем 5,52 грамма на кубический сантиметр, чтобы компенсировать меньшую, чем средняя, плотность поверхностных слоев.

Само по себе это нисколько не опровергает теории, что Земля — каменный шар, так как с глубиной давление, по-видимому, должно расти; вышележащие слои давят на нижние, и это давление увеличивается к центру Земли, где оно составляет примерно 3 500 000 атмосфер. Порода, которая имела на поверхности плотность 2,8 грамма на кубический сантиметр, будет раздавлена «в лепешку», и в центре Земли плотность ее составит 12 граммов на кубический сантиметр.

Изучение землетрясений позволяет получать более подробные сведения о глубинных недрах Земли. К 1900 году Землю стали опоясывать сетью сейсмических станций, оборудованных приборами для изучения колебаний, сотрясающих тело планеты вследствие подземных толчков.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука